

<u>Day 1:</u>

- 1. Introduction ("Why?")
- 2. Hadron Collider basics
- 3. Colliders
- 4. Detectors

<u>Day 2:</u>

5. Data reconstruction + Analysis

6. Physics

6.1 QCD + Electroweak6.2 Top Quark

<u>Day 3:</u>

6.3 Higgs Bosons6.4 Beyond SM Physics

- I'm happy to answer questions at any time
- Any selection of topics is biased in these lectures as well...

1. Introduction

In a nutshell: the big questions of microscopic physics

- Standard Model is extremely successful
- Experimental discovery of all of its matter constituents and force carriers
- Simple common approach to describe all (relevant) forces: QFT with a gauge principle
- Self-consistent at the level of quantum corrections

1. Introduction	In a nutshell: the big questions of microscopic physics							
<u>2nd 'but':</u>								
Even if we find a light Higgs: why is it so light?								
If there are no new phenomena which protect radiative corrections to the Higgs mass, it will receive un-naturally large (quadratic) corrections:								
m _H =m _{bare} - δm≈	(200 GeV)							
$\delta m \sim \Lambda^2 = m_{bare}$ and δm are both $o(\Lambda^2)$ but almost equal!								
'fine tuning'								
We know this since so long that some of us are even willing to accept it (e.g. split SUSY,)								
Nevertheless, there are very good ideas how to protect the Higgs mass								

Find out what protects the Higgs mass at the TeV scale

1.	Introduction

The SM was to a large extent established at (hadron+lepton) colliders

The road ahead of us will need a broader set of exp. techniques:

- neutrino physics (from space + from accelerators/reactors)
- astro(particle)physics experiments (CMB, cosmic rays, DM searches, ...)
- ultra-high precision at low energy (rare decays, g-2, ...)
- but of course again colliders!

Which energy?

The TeV scale looks very interesting!

Why? →

1.	Introduction	

Why is the TeV scale interesting?

- 1. SM without Higgs violates unitarity (in $W_L W_L \rightarrow W_L W_L$) at 1.3 TeV! (something must happen!)
- 2. Higgs field vacuum expectation value v = 246 GeV
- 3. Evidence for light Higgs
- 4. Dark Matter consistent with (sub) TeV-scale WIMP (e.g. SUSY-LSP)
- 5. $2m_{top} = 350 \text{ GeV}$
- 6. "Fine tuning" can be mitigated with TeV-scale new physics (SUSY,...)

1. Introduction	Experiments at high er	nergy
- $E = hc/\lambda$ resolve small st - $E = mc^2$ directly product Relevant energy: c - \rightarrow colliders $E_{cm} =$ (fixed target: E would need 10 ¹⁷ to have same c.	ructures ructures ce new particles entre-of-mass energy $2 E_{beam}$ $E_{cm} = \sqrt{2}(E_{beam} m_{target}))$ eV (= 100000 TeV) m.s.	Image: construction of the construc
(+ cms system e in laboratory	extremely boosted)	1 MeV Image: Construction of the constru

1. Introduction

2. Basics

- p = strongly interacting huge SM backgrounds not possible to reconstruct all f.st. need highly selective trigger
- e = electro-weakly interacting low SM backgrounds can reconstruct all final states no trigger needed!

2. Basics	Hadron – Hadron Collisions						
Hadron Collisions are a big mess							
	Idea stolen from K.Jakobs						
	why are we interested in that?						

2. Basics

The (most) simplified view:

A fraction of the hadron-hadron-collisions contain a hard scattering process:

Collisions of two partons (with momentum fractions x_1, x_2) collide in a $2 \rightarrow 2$ (or $2 \rightarrow 1, 2 \rightarrow 3, ...$) scattering process at parton c.m.s. energy

If $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ is large the partonic process

- can be calculated perturbatively
- dominates the observable final state (high p_T – process)

To produce a mass of:

 LHC
 Tevatron

 100 GeV:
 x ~ 0.007
 0.05

 5 TeV:
 x ~ 0.36
 -

2. Basics

Hadron – Hadron Collisions – more realistic view

Very complex process

Many approximations

- → MC Generators
- \rightarrow data driven modelling
- hard scattering
- parton shower
- initial + final state rad.
- hadronisation
- hadron decays
- underlying event
 - (multi-parton int.)

not shown:

virtual higher order correctionss

 $\frac{dN}{d\eta} \approx 7$

Hard processes are only a tiny fraction of total cross section

Most interactions due to interactions at large distance between incom. protons

Small momentum transfer, particles in the final state have large longitudinal, but small transverse momentum

 $< p_T > \approx 600 \text{ MeV}$ (of charged particles in the final state)

- about 7 charged particles per unit of pseudorapidity in the

- central region of the detector
 - uniformly distributed in $\boldsymbol{\Phi}$

These events are called "Minimum-bias events"

They dominate the total rate Their properties cannot be calculated from pQCD! Need to be measured

Tevatron

• Proton-Antiproton

Pro:

Annihilation processes with valence quarks (high $x \rightarrow$ large \sqrt{s}) Con: Antiproton production + recycling tedious (limits luminosity)

- 36x36 bunches
- bunch crossing 396 ns
- Run II started in March 2001

3. Colliders

The Large Hadron Collider LHC

Proton - Proton Design beam energy 7 TeV Design luminosity 10³⁴ cm⁻²s⁻¹ Bunch spacing 25 ns Particles/Bunch 10¹¹ x 2808 bunches SC Dipoles 1232, 15 m, 8.33T Stored Energy 350 MJ/Beam Stored Energy (magnets) 10 GJ (10 GJ melt 24 tons of Cu) 3. Colliders LHC Status Sept 10, 2008: first beam day Sept 10-12, 2008: very successful commissing - "feels like an old friend" (L. Evans) beam life times ~ hours! Sept 19, 2008: electrical connection between two magnets ("busbar") in S34 had too high R (200 n Ω instead of 0.3 n Ω) produced too much heat \rightarrow SC quench \rightarrow more heat \rightarrow melting connection \rightarrow insulation vacuum damaged \rightarrow LHe into vacuum \rightarrow mechanical damage, 400 MJ dissipated, 6t He into tunnel June 2, 2009 39 dipoles and 14 quadrupoles repaired/replaced, electrical connection finished improved diagnostics, many measurements, add. pressure realease valves, improved mech. anchoring, enhanced quench protection system: avoid reoccurence!

[Burkhardt LP09]

3. Colliders

Prospects

Restart with beam planned in mid-November (long run until end 2010) Collisions at injection energy 2×0.45 TeV = 0.9 TeV

2. physics run at $2 \times 3.5 \text{ TeV} = 7 \text{ TeV}$

3. physics run at increased energy, max. 2 × 5 TeV = 10 TeV (H.lons end 2010) Luminosity?

	•		I	No crossi	ing angle	•			Crossin	ng angle		
Energy	TeV	0.45	0.45	3.50	3.50	3.50	3.50	3.50	3.50	4.00	5.00	7.00
Bunch intensity	1.E+10	1	4	4	4	4	9	9	9	9	9	11.5
Bunches		4	43	43	43	156	156	702	1404	2808	156	2808
Emittance	μm	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
β*	m	11	11	11	2	2	2	3	3	3	2	1
Luminosity	cm ⁻² s ⁻¹	4.2E+26	7.2E+28	5.6E+29	3.1E+30	1.1E+31	5.6E+31	1.7E+32	3.3E+32	7.7E+32	8.0E+31	1.0E+34
Protons		4.0E+10	1.7E+12	1.7E+12	1.7E+12	6.2E+12	1.4E+13	6.3E+13	1.3E+14	2.5E+14	1.4E+13	3.2E+14
% nominal		0.0	0.5	0.5	0.5	1.9	4.3	19.6	39.1	78.3	4.3	100.0
Stored energy	MJ	0.0	0.1	1.0	1.0	3.5	7.9	35.4	70.8	161.7	11.2	361.7
Monthly (0.2)	pb-1	0.00	0.04	0.29	1.59	5.76	29.16	85.84	171.67	399.85	41.65	5231.88
Physics month				1	2	3	4	?	?	?	?	
Pile-up, σ _{in} = 75 Burkhardt	5 mb LP09]			0.09	0.5	0.5	2.4					

CDF @ Tevatron

New in Run II:

Tracking system

Silicon vertex detector (SVXII) Intermediate silicon layers Central outer tracker (COT)

End plug calorimeter Time of flight system

Front-end electronics Trigger and DAQ systems

12 countries, 59 institutions 706 physicists

D0 @ Tevatron

19 countries, 83 institutions

664 physicists

New for Run II

Inner detector magnetic field added

Preshower detectors Forward muon detector

Front-end electronics Trigger and DAQ

Principles of particle detection + Overall structure similar to previous detectors (LEP, HERA, Tevatron) - BUT

Specific challenges at LHC

- <u>Huge absolute collision rate</u> (25 ns, up to 40 minimum bias events per BX)
 → fast detectors (identifiy each bunch crossing)
 - \rightarrow radiation hardness (tolerate up to 10¹⁷ n/cm² trackers: 10¹⁴ n/cm²)
 - \rightarrow high granularity (handle pile-up)
 - \rightarrow trigger (suppress to 10⁻⁷ of input), DAQ, reconstruction, analysis
- <u>Small Signal/Background ratio</u>
 - e.g. $\sigma_{Higgs} / \sigma_{tot} \sim 10^{-9}$ visible σ_{Higgs} even smaller
 - → very powerful object identification / jet background suppression needed
 - \rightarrow mass reconstruction of leptonic/photon (H,Z) <u>and</u> jet (top \rightarrow bqq) objects
- Higher energies than previously
 - \rightarrow large B-Field (\rightarrow tracking up to 3-5 TeV)
 - \rightarrow larger calorimeters (\rightarrow containment of had. showers \rightarrow muon ID)

4. Detectors LHC Detectors - Targets						
Physics object identification – suppression of QCD jets						
ObjectEfficiencyBG suppr.Motivation						
electrons	>70%	100000	Z,W,top,H → 4 ℓ ,			
photons	80%	1000	Н→үү			
muons	>97% for p _T >1GeV		H→4ℓ,			
tau leptons	50%	100	H/A→ττ, SUSY,			
b-jets	50%	100	top, H→bb,SUSY,…			

<u>Mass resolution (calorimetric)</u> (to suppress ~flat backgrounds)

Photons, Electrons: 1% $(H \rightarrow \gamma \gamma, high mass resonances)$

B-Jets, Jets: 10% W, top, high mass resonances

The ATLAS Experiment

Pixel detector: ~ 80 million channels $50\mu m \ x \ 400\mu m \ long$

K. Desch - Physics at Hadron Colliders - BND School Rathen Sept 2009

CMS Si tracker - ... to reality

4. Detectors ATLA			S vs. CMS – complementary technology choices		
			ATLAS	CMS	
Solenoidal B-Field		2T in front of ECAL	4T behind HCAL		
Tracking		Si (Pixel+Strips)+Gas (TRT)	all Si (Pixel+Strips)		
	ECAL		L-Ar (high granularity)	PbWO ₄ crytals (high E-resolution)	
	HCAL		Fe – Scintillator (10 λ)	Brass – Scintillator (7 λ)	
	Muons		SC air-core toroid (standalone)	Instrumented iron	

Suggested reading on comparison of ATLAS and CMS:

General-purpose detectors for the Large Hadron Collider. D. Froidevaux, P. Sphicas, (CERN) . Nov 2006. 79pp. Published in Ann.Rev.Nucl.Part.Sci.56:375-440,2006.

TABLE 5	Evolution of the amount of material expected in the ATLAS and CMS trackers
from 1994 t	o 2006

	ATLAS		CMS	
Date	$\etapprox 0$	$\etapprox 1.7$	$\etapprox 0$	$\eta pprox 1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50

The numbers are given in fractions of radiation lengths (X/X0). Note that for ATLAS, the reduction in material from 1997

- Material increased by ~ factor 2 from 1994 (approval) to now (end constr.)
- Electrons lose between 25% and 70% of their energy before reaching ECAL
- Between 20% and 65% of photons convert into e⁺e⁻ pair before ECAL
- Need to know material to ~ 1% X_0 for precision measurement of m_W (< 10 MeV)

[Froidevaux]

• Both ATLAS and CMS were ready to take data in Sept 08 (and still are!)

"Beam splash" event (dump beam into close-by upstream collimator) \rightarrow 1000s of muons seen in ATLAS and CMS

4.	Detectors	LHC detectors - statu	JS				
	Example: ATLAS (CMS very similar)						
	Sub-detector detector (%)	N. of	channels Fraction	of working			
	Pixels		80x10 ⁶	98.5			
	Silicon strip detect	tor (SCT)	6x10 ⁶	~99.5			
	Transition Radiation	on Tracker (TRT)	3.5x10 ⁵	98.2			
	LAr electromagne	tic calorimeter	1.7x10 ⁵	99.5			
	Fe/scintillator (Tile	ecal) calorimeter	9800	~99.5			
	Hadronic end-cap	LAr calorimeter	5600	99.9			
	Forward LAr calor	imeter	3500	100			
	Muon Drift Tube c	hambers (MDT)	3.5x10⁵	99.3			
	Barrel muon trigge	er chambers (RPC)	3.7x10 ⁵	~ 95.5			
		. ,	(aim: >	98.5 by first beams)			
	End-cap muon trig	ger chambers (TGC)	3.2x10 ⁵	> 99.5			

Pixels, SCT: achieved with cosmics:

- alignment precision: ~ 20 μ m (ultimate goal 5-10 μ m)
- alignment stability Oct-2008-June-2009: few microns
- layer hit efficiency: > 99%; occupancy: 10⁻¹⁰

Cosmics calibration: example ATLAS TRT

5. Reconstruction (Combined) Reconstruction of high-p_T objects

Main objects to identify and reconstruct high- p_T events:

	Tracker	ECAL	HCAL	Muon- System	Vertex- Detector
Electrons	++	+++	+	-	-
Photons	+	+++	+	-	-
Muons	+(+)	+	+	+++	(+)
Taus	++	++	++	++	++
B-Jets	++	+	+	+	+++
Jets	+	+++	+++	(+)	-
Missing E_{T}	+	+++	+++	+	-

Most physics objects require many of the detector components to achieve the required/desired performance: <u>combined performance</u>

5. Reconstruction	Targets (again)		
Object	Efficiency	BG suppr.	Motivation
electrons	>70%	100000	Z,W,top,H→4 ℓ ,
photons	80%	1000	Н→үү
muons	>97% for p _T >1GeV		H→4ℓ,
tau leptons	50%	100	H/A→ττ, SUSY,…
b-jets	50%	100	top, H→bb,SUSY,

Some examples (from ATLAS – sorry) how this is achieved...

5. Reconstruction Electrons **Electron candidates** - Calorimeter seeded \rightarrow sliding window algorithm - Matching track \rightarrow exclude conversion tracks, \rightarrow matching window 0.05x0.1 in $\Delta \eta x \Delta \phi$ - E/p < 10 (loose) Cut-based selection (",simple") for loose-medium-tight ",electrons", e.g. track isolation, hadronic leakage, matching quality, TRT transition radiation,... $E_T > 17 \text{ GeV}$ Cuts Efficiency (%) Jet rejection $Z \rightarrow ee$ $b.c \rightarrow e$ Rejection Likelihood Tight (TRT) cuts 10⁵ 87.96 ± 0.07 50.8 ± 0.5 567 ± 1 Loose Tight (isol.) cuts 2184 ± 13 Medium 77.29 ± 0.06 30.7 ± 0.5 likelihood selection 22.5 ± 0.4 $(8.9 \pm 0.3)10^4$ Tight (TRT.) 61.66 ± 0.07 $_{10^4}$ can do better – Tight (isol.) 64.22 ± 0.07 17.3 ± 0.4 $(9.8 \pm 0.4)10^4$ $E_T > 8 \text{ GeV}$ Cuts but needs understanding Efficiency (%) Jet rejection of correlations Single electrons $b, c \rightarrow e$ $(E_T = 10 \text{ GeV})$ $10^{3} = E_{T} > 17 \text{ GeV}$ Ξ 75.8 ± 0.1 55.8 ± 0.7 513 ± 2 Loose 64.8 ± 0.1 41.9 ± 0.7 1288 ± 10 Medium ATLAS

60

65

70

75

Tight (TRT.)

Tight (isol.)

 46.2 ± 0.1

 48.5 ± 0.1

 29.2 ± 0.6

 28.0 ± 0.6

 $(6.5 \pm 0.3)10^4$

 $(5.8 \pm 0.3)10^4$

90

85

Electron efficiency (%)

80

Leptonic decay hard to distinguish from prompt lepton (except lifetime) \rightarrow concentrate on hadronic tau's

5. Reconstruction

Tau leptons

A hadronic tau is a narrow, low-multiplicity jet of hadrons ("tau-jet") Main (serious!) background: QCD (quark,gluon) jets of low multiplicity

Seeding: Calorimeter-based or track-based (or from combined objects)

Discriminating varibles:

- 1. emRadius: radius of the cluster in the EM calorimeter,
- 2. isolationFraction: fraction of the transverse energy deposited in a hallow cone of $0.1 < \Delta R < 0.2$ around the tau cluster over the total energy in a cone of $\Delta R = 0.4$.
- 3. ntrack: number of associated tracks,
- 4. charge: absolute tau electric charge,
- 5. **numStripCells**: number of hits in the eta-strip with $E_T > 200$ MeV,
- 6. stripWidth2: energy weighted width in strips,
- 7. ipSigLeadTrack: lifetime signed impact parameter (2D) of the leading track,
- 8. etOverPtLeadTrack: ratio of the transverse energy of tau candidate to the transverse momentum of the leading track.

t decay

performance:

Selection	Efficiency	Rejection	Rejection	Rejection	Rejection
		cuts	TMVA cuts	NN	PDRS
	$E_T = 10-30 \text{ GeV}$				
one-prong	0.33	225 ± 10	435 ± 30	510 ± 40	460 ± 40
three-prong	0.28	360 ± 25	470 ± 40	740 ± 70	670 ± 60
	$E_T = 30-60 \text{ GeV}$				
one-prong	0.42	140 ± 10	170 ± 10	440 ± 40	320 ± 30
three-prong	0.45	60 ± 2	9.0 ± 10	160 ± 10	130 ± 10

5. Reconstruction

Particles which are neutral and interact only via weak interaction are invisible to the detector.

Their presence can be only inferred indirectly from "missing energy" (E/p- conservation).

Since longitudinal momentum p_L cannot be measured at a hadron collider only transverse momentum conservation can be used:

$$0 = \sum_{i} p_{x,i} \ 0 = \sum_{i} p_{y,i} \ E_{T}^{miss} = \sqrt{\left(\sum_{i} p_{x,i}\right)^{2} + \left(\sum_{i} p_{y,i}\right)^{2}}$$

 $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$ does not know why a particle was missed in the sum

- because it did not interact (neutrino, neutralino, ...) : good
- because it escaped through a crack: bad
- because it escaped through the beampipe: bad (but low p_T)
- because it was misidentified (e.g. muon as hadron): bad
- because its energy was mismeasured (resolution, homogeneity):bad

fake

E^{-miss}

End of Day2

6. Physics QCD Electroweak Top Higgs no time for BSM physics (3)

6. Physics		Rates a	Rates at LHC					
LO cross sections in pb, inclusive								
	E _{cm} [TeV]/ Process	7	10	14	Evts (7 TeV) in 200/pb	Ratio 7/14		
	QCD pt>100 GeV	3.2E+05	6.8E+05	1.4E+06	6.4E+07	0.2		
	Z incl	2.5E+04	3.6E+04	5.7E+04	5.0E+06	0.4		
	W incl	9.5E+04	1.4E+05	2.1E+05	1.9E+07	0.5		
	ttbar	8.4E+01	2.2E+02	4.8E+02	1.7E+04	0.2		
	H(150 GeV)	4.0	8.2	16.0	8.0E+02	0.3		
no branching ratios included !								
[Dissertori]								

Compare inclusive jet cross section with NLO + 2-loop threshold corrections

- \rightarrow sensitivity to strong coupling constant
- $\rightarrow\,$ observe running of $\alpha_{\rm s}$
- \rightarrow demonstration of asymptotic freedom

Modelling of extra jets

- <u>2→2 process at LO</u> + parton shower (PS) (e.g. PYTHIA) fails at high jet multiplicities + large emission angles/p_t's
- <u>2→n process at LO (</u>"Matrix element") + PS (e.g. ALPGEN, SHERPA,...) needs careful "matching" algorithms "CKKW", "MLM", ... (avoid double counting of partons from ME and PS)
- <u>2→3 processes at NLO (MC@NLO,...)</u> + PS ("correct" for W+1jet, Z+1jet, … but similar problem as LO + PS for higher jet multiplicities good for total cross section ("K-factor")

- → even "state-of-the-art" Monte Carlo programs have large uncertainties
- → prepare to measure these cross sections with data

• Tevatron Run-II measurements so far consistent with SM but: top is a "gate to new physics"

Top Quark at Tevatron

Top-Antitop cross section

CDF Run II Preliminary July 2008 Cacciari et al., arXiv:0804.2800 (2008) Assume m,=175 GeV/c Z Kidonakis & Vogt. arXiv:0805.3844 (2008) IIII Moch & Uwer, arXiv:0807.2794 (2008) Lepton+Track 8.3±1.3±0.7±0.5 $(L = 1.1 \text{ fb}^{-1})$ Lepton+Track: Vertex tag 10.1±1.8±1.1±0.6 (L= 1.1 fb) Dilepton 6.7+0.8+0.4+0.4 (L= 2.8 fb) Lepton+Jets; Kinematic ANN 6.8+0.4+0.6+0.4 (L= 2.8 fb) Lepton+Jets; Vertex Tag 7.2+0.4+0.5+0.4 (L= 2.7 fb') Lepton+Jets; Soft Electron Teg 7.8+2.4+1.5+0.5 (L= 2.0 fb) Lepton+Jets; Soft Muon Tag 8.7±1.1±0.9±0.5 (L= 2.0 fb) MET+Jets: Vertex Tag $6.1\pm1.2\pm_{0.6}^{0.8}\pm0.4$ (L= 0.3 fb) All-hadronic: Vertex Tag 8.3±1.0 ±1.5±0.5 (L= 1.0 fb) CDF combined 7.0±0.3±0.4±0.4 (L= 2.8 fb) (mul)e(ava)e(lum) 2 6 8 10 12 Ũ. 4 14 $\sigma(pp \rightarrow t\bar{t}) (pb)$

Measurements performed in II, I(incl τ)+jets, all-jets channels Good agreement with NLO-QCD

Top mass

Top mass

systematic limit reached

further improvement will be slow

Top at the LHC

Top-physics topics of interest

- tT cross section :
- tT semileptonic (lepton + jets)
- tT dileptonic
- tT fully hadronic

Top mass:

- tT semileptonic (using hadronic jets)
- tT dileptonic (using leptons)

Top property:

- top charge
- top width
- tT spin correlation
- W helicity
- · Yukawa coupling
- anomalous coupling
- resonance production

Single top measurement:

- s-, t-, Wt cross section
- Vtb measurement
- top polarization

A rich collection of physics programs.

HCPS2008 - May 27, 2008

Higgs Bosons

Why Higgs?

Quantum field theory with massive exchange particles fails at high energies:

"if nothing happens, something must happen..."

The Standard Model Solution:

(rescue plan for the gauge principle) Introduction of a new scalar field with non-vanishing field strength in the vacuum: the Higgs field.

6. Physics	Why Higgs?				
<u>Paradigm:</u> All (elementary) particles are massless					
⇒ gauge principle works ⇒ renormalizable theory (finite cross sections)					
permanent interaction with the Higgs field acts, as if the particles had a mass (effective mass)					
$\left(rac{1}{q^2} ight)$	$- \bigoplus \underbrace{\left(\frac{gv}{\sqrt{2}}\right)^2 \left(\frac{1}{q^2}\right)} \bigoplus \underbrace{\left(\frac{gv}{\sqrt{2}}\right)^4 \left(\frac{1}{q^2}\right)^2} \bigoplus \dots} \underbrace{\left(\frac{gv}{\sqrt{2}}\right)^4 \left(\frac{1}{q^2}\right)^2}$				
=	$\frac{1}{q^2 - M^2} \text{ with } M^2 = g^2 \frac{v^2}{2}$				

Why Higgs?

How to add such a field in a gauge invariant way?

"Mexican hat-Potential"

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

most simple case: Φ =complex doublet of weak isospin (=SM)

but this is a pure guess many more possibilities, e.g.: 2 doublets (minimal SUSY), triplets,...

models with "true" and "effective" mass are not equivalent:

formulation with the help of Higgs mechanism:

- is gauge invariant
- postulates at least 1 scalar, massive Higgs boson

Why Higgs?

Theory:

Upper bound: perturbativity (I<1) Lower bound: vacuum stability Models: minimal SUSY: m<135 GeV GUT's : m<180 GeV

Experiment:

Precision measurements (LEP,SLC,Tevatron) are sensitive to virtual corrections:

m<250 GeV (95% CL) within SM

The Higgs boson is probably "light"!

K. Desch - Physics at Hadron Colliders - BND School Rathen Sept 2009

critical experimental issues:

low mass: b-tagging, jet-energy resolution (di-jet mass = m_H)

high mass: missing transverse energy, background modelling

6. Higgs search

at Tevatron: example WH \rightarrow bb $\ell v @ D0$

in addition look at W+3jets (different BG composition...)

6. Higgs search

at Tevatron: example WH \rightarrow bb $\ell v @ D0$

Then apply m_H -dependent neural network to check for compatibility with HW production

Main mode: $gg \rightarrow H \rightarrow WW^* \rightarrow I_V I'v' (I, I'=e,\mu)$ two high p_T isolated leptons, missing E_T three main channels (ee, $e\mu$, $\mu\mu$) start probing other channels ($\mu\tau$)

No direct reconstruction of the Higgs mass (v's)

Main background:

Dibosons

WW separated from the signal based on angular correlation Δφ(I,I') Higgs is a scalar!

→ $\Delta \phi$ best background discriminant , used as one of the input variables to the NN

Other Backgrounds:

W+jets and multijets need good lepton identification Z→ττ: specific for eµ channel and channels involving taus

at CDF and D0: status summer 2009

at Tevatron: status winter 2009

$H \rightarrow \gamma \gamma @ LHC$

BR(H $\rightarrow \gamma\gamma$) = 0.2%, narrow peak huge, but smooth background \rightarrow mass resolution is the key

- Photon energy resolution & calibration
- Photon direction \rightarrow granularity

```
Mass resolution (ATLAS): 1.4 GeV
```

Problem:

60% of H $\rightarrow \gamma\gamma$ events have at least one conversion

need to be identified tail in resolution need precise knowledge of material to obtain reliable simulation of signal & bg

Vector Boson Fusion

6. Higgs search high pT HZ
HW, HZ production was considered not a discovery channel for a long time Very recent new investigation: H+W/Z production at high p_T(H)
2 b-quarks from Higgs decay will be reconstructed in single jet boosted X is single

90

80⁻⁻ 70⁻⁻ 60⁻⁻ 50⁻⁻ 40⁻⁻ 30⁻⁻ 20⁻⁻ 10⁻⁻ ATLAS (prel.) sensitivity for 30 fb⁻¹ ($m_H = 120 \text{ GeV}$)

jet

Channel	signal	t_i	w_i	z_i	S/\sqrt{B}
$llb\overline{b}$	5.34	0.98	0.0	11.2	1.5
$l u bar{b}$	13.5	7.02	12.5	0.78	3.0
$ u u b \overline{b}$	16.3	45.2	27.4	31.6	1.6
Combined					3.7

[Butterworth et al,arXiv:0810.0409; ATL-PHYS-PUB-2009-088]

HZ→bbvv

Combined discovery prospects

