# <u>Flavor Pendula</u>

# Part 0: General IntroductionPart I: Neutral Meson MixingPart II: 3-flavor Neutrino Mixing

Michael Kobel (TU Dresden) 22.9.09 BND school Rathen

## **Coupled Pendula**

- Free Oscillation of one pendulum:  $\omega_0^2 = \frac{g}{\ell}$
- 2 pendula with same length *l*, mass *m* coupled by spring with strength *k*
- 2 Eigenmodes
  - Different eigenfrequencies = energies

Mode a (II + I) with  $\omega_a^2 = \omega_0^2$ Mode b (II - I) with  $\omega_b^2 = \omega_0^2 + \Delta \omega^2$ 

 Frequency (=energy) difference increases with stronger coupling

$$\Delta \omega^2 = \frac{kd^2}{m\ell^2}$$

Coupling can be steered by varying *k* or *d* (we'll vary d in the following)



#### Two bases in Hilbert-space

#### flavor-basis

- eigenstates of flavor
- eigenstates of weak charge
- particles take part in weak interactions as flavor-eigenstates
- Examples:
  - $\overline{K}^{0}(s \overline{u}) \text{ or } K^{0}(\overline{s} u)$
  - $v_e$ ,  $v_\mu$ ,  $v_\tau$

#### <u>mass-basis</u>

- eigenstates of mass
- well-defined lifetime
- Particles propagate through space-time as mass-eigenstates  $|\upsilon(t)\rangle = |\upsilon\rangle \mathbf{e}^{i(\vec{p}\vec{x}-Et)}\mathbf{e}^{-\Gamma t}$
- Examples:

$$-$$
 K<sup>0</sup><sub>L</sub>, K<sup>0</sup><sub>S</sub>

- $v_1, v_2, v_3$
- Like coupled pendula, the coupling of particles leads to eigenstates with different masses and lifetimes, e.g. for linear combination of 2 states:

$$v_a = (v_\tau + v_\mu)/\sqrt{2}$$
 with  $m_a^2 = m_0^2$   
 $v_b = (v_\tau - v_\mu)/\sqrt{2}$  with  $m_b^2 = m_0^2 + \Delta m^2$ 

# Correspondences

| pendulum                              | particles                                                               |
|---------------------------------------|-------------------------------------------------------------------------|
| Linear oscillation                    | complex phase rotation                                                  |
| Eigenmodes                            | Mass eigenstates                                                        |
| → fixed eigenfrequencies              | → fixed phase frequencies                                               |
| Frequency differences $\Delta \omega$ | Frequency differences e <sup>i∆Et</sup> ~ e <sup>i∆m<sup>2</sup>t</sup> |
| $\rightarrow$ different energies      | → different masses                                                      |
| <b>One pendulum =</b>                 | Flavor eigenstate =                                                     |
| lin. combination of eigenmodes        | lin. combination of mass eigenstates                                    |
| amplitude <sup>2</sup>   ~            | amplitude <sup>2</sup>   ~                                              |
| total energy in oscillation           | detection probability                                                   |
| <b>Beat-Frequency</b>                 | <b>Flavor-Oscillation</b>                                               |
| $\sim \Delta \omega$ of eigenmodes    | $\sim \Delta m^{(2)}$ of mass eigenstates                               |

#### Part I: Pendula for Neutral Meson Mixing



coupled pendula for demonstrating KK-, DD- and BB-mixing

Idea: Klaus Schubert built 1987 in Institut für Hochenergiephysik Universität Heidelberg at the occasion of the discovery of BB-mixing by the ARGUS-Collaboration at DESY

#### Part I: Neutral Meson Mixing



- Need to be neutral and have distinct anti-particle (x)
- Needs to have a non-zero lifetime
  - top is so heavy, it decays long before it can even form a meson ( $\diamondsuit$ )
- That leaves four distinct cases...

Some sheets stolen from Gerhard Raven's

#### Solving the Schrödinger Equation

$$i\frac{\partial}{\partial t}\psi(t) = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M - \frac{i}{2}\Gamma \end{pmatrix}\psi(t)$$

Solution (in terms of eigenvectors):

$$\psi(t) = a \left| B_H(t) \right\rangle + b \left| B_L(t) \right\rangle$$

(a and b determined by initial conditions)

#### **Eigenvectors**:

 $|B_{H}\rangle = p |B\rangle + q |\overline{B}\rangle$  $|B_{L}\rangle = p |B\rangle - q |\overline{B}\rangle$ 

#### From the eigenvector calculation:

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$

#### Evolution of eigenvectors:

$$|B_H(t)\rangle = |B_H\rangle e^{-i\left(M + \frac{1}{2}\Delta m - \frac{i}{2}(\Gamma - \Delta\Gamma)\right)t} |B_L(t)\rangle = |B_L\rangle e^{-i\left(M - \frac{1}{2}\Delta m + \frac{i}{2}(\Gamma + \Delta\Gamma)\right)t}$$

#### $\Delta m$ and $\Delta \Gamma$ follow from the eigenvalues:

$$\Delta m + \frac{i}{2}\Delta\Gamma = 2\sqrt{\left(M_{12} - \frac{i}{2}\Gamma_{12}\right)\left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)}$$

if: 
$$\Gamma_{12} = 0 \Rightarrow \Delta \Gamma = 0, \left| \frac{q}{p} \right| = 1$$

#### Summary of Neutral Meson Mixing



# How can pendula model all this? $\rightarrow$ Just start with one pendulum (e.g. $\overline{B^0}$ or $B^0$ )!

- $\overline{B^0}(b \ \overline{d}) B^0(\overline{b} \ d)$  oscillations:
  - very few decay channels common to both
    - $\rightarrow$  Each flavor is damped separately
  - Just few flavor-oscillation periods observable
- $\overline{B_s^0(b s)} B_s^0(\overline{b} s)$  oscillations:
  - mixing via  $V_{ts}^{-2} = 0.04^2 > V_{td}^2 = 0.009^2$  much faster compared to B<sup>0</sup>
    - → well, model it by slower decay relative to mixing...
  - many flavor-oscillation (beat) periods observable
- $\overline{D^0(u c)} D^0(\overline{u} c)$  oscillations:
  - mixing via (m<sub>b</sub>, m<sub>s</sub>) << m<sub>t</sub> much slower compared to B<sup>0</sup>
     → again, model it by faster decay relative to mixing...
  - no flavor-oscillation period observable
- $\overline{K^0}(s \ \overline{d}) K^0(\overline{s} \ d)$  oscillations:
  - most decay channels in common (  $\pi\pi$ ,  $\pi\pi\pi$  )
    - $\rightarrow$  The damping is in the coupling!
  - Large Phase space difference for decays of mass eigenstates (CP-cons.!)
     → The damping has to be very different for the eigenmodes
  - After a while only the  $K_L^0$  eigenmode remains

#### Neutral Kaon Mixing

- K<sub>1</sub> and K<sub>2</sub> are their *own* antiparticle, but one is CP even, the other CP odd
- Only the CP even state can decay into 2 pions
- $|K_1\rangle$  (CP=+1) →  $\pi\pi$  (CP=-1 \* -1 =+1)
- The CP odd state will decay into 3 pions instead
  - $|K_2>$  (CP=-1) → ππ π (CP = -1\*-1\*-1 = -1)
- There is a huge difference in available phasespace between the two (~600x!) → the CP even state will decay much faster
  - Difference due to  $M(K^0) \approx 3M(\pi)$
  - Δ has a large imaginary component!



#### What about CP-violation?



This tends to be very confusing...

EVIDENCE FOR THE  $2\pi$  DECAY OF THE  $K_2^{\circ}$  MESON\*<sup>†</sup>

J. H. Christenson, J. W. Cronin,<sup>‡</sup> V. L. Fitch,<sup>‡</sup> and R. Turlay<sup>§</sup> Princeton University, Princeton, New Jersey (Received 10 July 1964)

three-body decays of the  $K_2^{0}$ . The presence of a two-pion decay mode implies that the  $K_2^{0}$  meson is not a pure eigenstate of *CP*. Expressed as  $K_2^{0} = 2^{-1/2} [(K_0 - \overline{K}_0) + \epsilon (K_0 + \overline{K}_0)]$  then  $|\epsilon|^2 \cong R_T \tau_1 \tau_2$  where  $\tau_1$  and  $\tau_2$  are the  $K_1^{0}$  and  $K_2^{0}$  mean lives and  $R_T$  is the branching ratio including decay to two  $\pi^0$ . Using  $R_T = \frac{3}{2}R$  and the branching ratio quoted above,  $|\epsilon| \cong 2.3 \times 10^{-3}$ .

$$\frac{|K_L\rangle}{|K_S\rangle} = p \left| K^0 \right\rangle - q \left| \overline{K^0} \right\rangle$$
$$\frac{|K_S\rangle}{|K_S\rangle} = p \left| K^0 \right\rangle + q \left| \overline{K^0} \right\rangle$$

$$\langle K_L | K_L \rangle \equiv 1 \Rightarrow |q|^2 + |p|^2 = 1$$

eg.  $p = 1 + \epsilon$  $q = 1 - \epsilon$  with  $|\epsilon| << 1$ 

#### CP-violation with pendula

- Realisation: differences between the  $\overline{K}^0$  and  $K^0$  pendula
  - Different moments of inertia *ml*<sup>2</sup> (*m* and/or *l* different)
  - Different coupling strengths (lever arm d different)
     → corresponds to differences of V<sub>td</sub> and V<sub>td</sub>\* in mixing diagram
- $K_L$  has unequal amounts of  $\overline{K}^0$  and  $K^0 \rightarrow$  wait for  $K_L$  and have a look!
- Equal amounts of K<sup>0</sup> and K<sup>0</sup> evolve differently
   → former eigenmodes now develop! (cf. CPLear Experiment)



## Is CP violation with pendula a perfect model?

• No!

– all mechanical devices are **T** invariant!

- if CP is violated and T is conserved:
   → CPT is violated!
- In fact, we have modelled CPT violation!

#### Part II: Neutrino flavor pendula



coupled pendula for demonstrating 3-flavor neutrino mixing as realized in nature

Idea: Michael Kobel built 2004 at Uni Bonn, extended 2006 at TU Dresden with variable mixing angles and digital readout http://neutrinopendel.tu-dresden.de

#### 3-flavor neutrino mixing



 $\theta_{12}$ 

#### v flavor-oscillations

• Each flavor (e.g.  $v_e$ ) is sum of mass eigenstates ( $v_1$ ,  $v_2$ ,  $v_3$ )

• Each mass eigenstate with fixed p has a different phase frequency  $\omega_i$ 

•  $exp(i\omega_i t) = exp(iE_i t) = exp(i(\sqrt{p^2 + m_i^2})t) \sim exp(ipt + im_i^2 t/2p + ...)$ 



• The differences  $\Delta \omega_{ii} \sim |m_i^2 - m_i^2| =: \Delta m_{ii}^2$  lead to flavor oscillations •  $\Delta m_{ii}^2$  determines the oscillation period •  $\theta_{ii}$  determines the oscillation **amplitude**  $L_{ij} = 2.5m \frac{E(WeV)}{\Delta m_{ii}^2 (eV^2)}$ 

 $\cos^2 2\theta$ 

Pve-ve

0

#### Current values

cf. global fit Th.Schwetz et al., NJP 10 (2008)

| ∆m <sup>2</sup> <sub>23</sub> = 2,4 x 10 <sup>-3</sup> eV <sup>2</sup> | ∆m² <sub>13</sub> = 2,5 x 10 <sup>-3</sup> eV² | ∆m² <sub>12</sub> = 0,08 x 10 <sup>-3</sup> eV² |
|------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|
| "fast" oscillation                                                     |                                                | "slow" oscillation                              |
| $L_{23} = 1  km \times E(MeV)$                                         |                                                | $L_{12} = 30 \ km \times E(MeV)$                |
| $\theta_{23} = 45^{\circ} \pm 3^{\circ}$                               | θ <sub>13</sub> < 11° (90% CL)                 | $\theta_{12}=33.5^\circ\pm1.5^\circ$            |
| 0                                                                      | Δ Δ                                            | 0                                               |

 $0_{13}, 0$ 

consistent with so-called tri/bi-maximal mixing

<sup>O</sup>atmos, beam

$$\theta_{23} = 45^{\circ} \qquad \qquad \theta_{13} = 0^{\circ} \\ U_{\text{PMNS}} \approx \begin{pmatrix} \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 $\theta_{12} = 35.3^{\circ}$ 

solar, reactor

Harrison, Perkins, Scott '99,'02 Z.Xing,'02, He, Zee, '03, Koide '03 Chang, Kang, Kim '04, Kang '04

#### Realisation as coupled pendula

inverted hierarchy

 $v_2$ 

 $v_1$ 

 $v_3$ 

• 
$$\mathbf{v}_3 = (\mathbf{v}_\mu + \mathbf{v}_\tau)/\sqrt{2}$$

• 
$$v_2 = (-v_e + v_\mu + v_\tau)/\sqrt{3}$$

• 
$$v_1 = (2v_e + v_\mu + v_\tau)/\sqrt{6}$$

normal

m

 $v_3$ 

 $v_2$ 



## The solar neutrino "deficit"





**Ray Davis** 

Nobelpreis 2002

380000 I Perchlorethylen in der Homestake- Mine



$$\nu_{a}$$
 + <sup>37</sup>Cl  $\rightarrow$  <sup>37</sup>Ar + e<sup>-</sup>

Ausspülen des <sup>37</sup>Ar (0.5 Atome/Tag)

• <u>Davis:</u> only sensitiv to  $v_e$ Result: Only 30% of expected  $v_e$  detected

## need for enhancement (MSW effect)

- nuclear fusion: 100%  $v_e$  leave the sun (w/o MSW effect) 4p  $\rightarrow$  <sup>4</sup>He + 2e<sup>+</sup> +  $2v_e$  + 27 MeV
- "slow" oscillation via  $\Delta m_{12}^2$  and  $\theta_{12}$ , pendula: weak coupling

T/2

- transition to  $(v_{\tau} v_{\mu})/\sqrt{2}$  not possible, since  $v_{e}$  not in  $v_{3}$
- oscillation only to  $(v_{\tau} + v_{\mu})/\sqrt{2}$

000000002 (0000000002

•  $P(v_e \rightarrow v_e) > 50\%$  since just  $v_1$  and  $v_2$  count  $\rightarrow$  need for enhancement (MSW effect)





100000002 0000000000

## atmospheric neutrinos





look at  $\nu_{e}$  and  $\nu_{\mu}$  from air showers:

- no deficit for  $v_e$
- $\boldsymbol{\cdot}$  clear deficit for  $\boldsymbol{\nu}_{\mu}$
- fully compatible with  $\nu_{\mu} \not \rightarrow \nu_{\tau}$

#### atmospheric neutrinos

- SuperKamiokande 2000: described als  $v_{\mu} \rightarrow v_{\tau}$
- pendula:
  - $v_e$ : weak coupling to  $v_{\mu}$ ,  $v_{\tau}$  $v_{\mu}$ : weak coupling to  $v_e$ strong coupling to  $v_{\tau}$



#### Interactive Neutrino Oscillation Laboratory



## Modify $\theta_{23}$



# Modify $\theta_{12}$



Abbildung 28: Sonnenneutrino-Oszillation mit  $\theta_{12}$ =0,7854rad (45°), Java-Applet.

# Modify $\theta_{13}$



## Impact of $\theta_{13}$ on atmospheric v

- $v_3 = (\sin\theta_{13}v_e v_\mu + v_\tau)/\sqrt{2.01}$
- reactor  $\overline{\mathbf{v}}_{\mathbf{e}} \rightarrow \overline{\mathbf{v}}_{\tau} + \overline{\mathbf{v}}_{\mu}$  disappearance and atmospheric  $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mathbf{e}}$  appearance
  - "slow" *directly* via  $\Delta m_{12}$  (weak coupling)
  - "fast" modulation via  $v_{\tau} v_{\mu}$  with  $\Delta m_{23}$  (strong coupling)

#### Interactive Neutrino Oscillation Laboratory



## Are neutrino pendula a perfect model?

#### Few "features"

- Need "creative" sign convention, leading to
- imperfection for understanding sequence of masses
- imperfection for  $\theta_{23} \neq 45^{\circ}$ 
  - some  $(v_{\tau} v_{\mu})$  present in  $v_1$  and  $v_2$
  - but  $v_e \rightarrow (v_\tau v_\mu)$  still not possible!

Else perfect!

## The END !