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Coupled Pendula

« Free Oscillation of one pendulum: «; =3

/
« 2 pendula with same length £, mass m
coupled by spring with strength k

« 2 Eigenmodes

— Different eigenfrequencies = energies
Modea (Il +1) with @’ =]
Mode b (Il - I) with a)s = a)g + A’

— Frequency (=energy) difference
Increases with stronger coupling

, _ kd?
m¢?
— Coupling can be steered by varying k or d
(we'll vary d in the following)

Aw




wo bases in Hilbert-space

mass-basis
« eigenstates of mass
 well-defined lifetime

« Particles propagate through
space-time as mass-eigenstates

‘U(t)> _ ‘U>ei(ﬁi—Et)e—Ft

flavor-basis
eigenstates of flavor
eigenstates of weak charge

particles take part in weak
interactions as flavor-eigenstates

Examples: « Examples:
— KOs u)orKo su) — KO, KO%
- Ve, VH’ V‘C - V»], V2, V3

« Like coupled pendula, the coupling of particles leads to
eigenstates with different masses and lifetimes,
e.g. for linear combination of 2 states:
Va=(vo+v)N2  with mg2 =mg?
vpy=(v,— Vv )/\/2 with  m. 2 =mg%+ Am?



Correspondences

pendulum

particles

Linear oscillation

complex phase rotation

Eigenmodes
—> fixed eigenfrequencies

Mass eigenstates
—> fixed phase frequencies

Frequency differences Ao
- different energies

Frequency differences elAEt ~ giam
—> different masses

One pendulum =
lin. combination of eigenmodes

Flavor eigenstate =
lin. combination of mass eigenstates

|amplitude?| ~
total energy in oscillation

|amplitude?| ~
detection probability

Beat-Frequency
~Aw of eigenmodes

Flavor-Oscillation
~ Am®@) of mass eigenstates




Part I: Pendula for Neutral Meson Mixing

coupled pendula
for demonstrating
KK-, DD- and BB-mixing

Idea: Klaus Schubert

built 1987 in

Institut fur Hochenergiephysik
Universitat Heidelberg

at the occasion of the discovery
of BB-mixing by the
ARGUS-Collaboration at DESY




Part I: Neutral Meson Mixing

U c d S b
u| x DY o d| x K" B
c| DY x ¢ s| K x By
t| ¢ & X b| B B, x
® Need to be neutral and have distinct anti-particle (x)
® Needs to have a non-zero lifetime
® top is so heavy, it decays long before it can even form a meson ()
® That leaves four distinct cases...

Note: for (much!) more detail, see eg. arXiv:hep-ex/0103016v|




Solving the Schrodinger Equation

i i Solution (in terms of eigenvectors):

b M _E M, _EFIQ
2| M o () = alBu(t) + b|BL(t)
A . I . l
M, -1 M - 5 r (a2 and b determined by initial conditions)
Eigenvectors: Evolution of eigenvectors:
|BH>=p|B>+q‘E> ‘BH(t)> _ |BH> e_.i(l\f[—l—%A.rn—%(F—AF))t
— (N — X Ayt i )
|BL>=p|B>—q‘B> |BL(t)> — |BL>€ z(]\[ 2Am+2(F+AF))1‘
From the eigenvector calculation: Am and AT follow from the eigenvalues:
/ 1
q M =351 ,L,. N —
p o A/flz . %1—\12 Am + §Ar =2 (:\112 — 2F12) (:\[f} — 21—‘12)

q

p

if: T, =0=AT'=0,]—[=1
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Summary of eutral Meson Mixing

T [
B% meson

3 4 5 6 7 8

=K% meson

Red:
given a P?, at t=0,
02 the probability of
finding a P°bar at t.
5~ 70000 20000 30000 40000 50000 % T 2 3 4 5 6 7 & 9§ 10
proper time (ps) proper time (ps)

el | I

9 10
proper time (ps)
1 K

DY meson

B. meson

proper time (ps)

m-m, | I,-I,
(L +T,)/2 Y= I, +T,
B® |0.75 ~0.01
B, |26 ~0.10
KO 10.95 0.996
[D° [0.000 |0.007
Blue:
given a P?, at t=0,
the probability of

finding a P° at t.




How can pendula model all this?
> Just start with one pendulum (e.g. B° or BY)!
B%( b d) — B% b d) oscillations:
— very few decay channels common to both

- Each flavor is damped separately
— Just few flavor-oscillation periods observable

B.(b_s) — BLO( b s) oscillations:
— mixing via V2 = 0.042 > V2= 0.009? much faster compared to B°
- well, model it by slower decay relative to mixing...

— many flavor-oscillation (beat) periods observable

D°(u c) — DY u c) oscillations:
— mixing via (m,, mg) << m, much slower compared to B°
- again, model it by faster decay relative to mixing...
— no flavor-oscillation period observable

K% s d) — K° s d) oscillations:
— most decay channels in common ( nw, Tnrw )
- The damping is in the coupling!
— Large Phase space difference for decays of mass eigenstates (CP-cons.!)
- The damping has to be very different for the eigenmodes
— After awhile only the K ° eigenmode remains




Neutral Kaon Mixing

e K, and K; are their own antiparticle, but \/5
one is CP even, the other CP odd

® Only the CP even state can decay into 2 | K0> — ‘K0>
pions |K2> —
— |K;> (CP=+1) = mw (CP=-1 * -] =+1) \/§

® The CP odd state will decay into 3 pions
instead
— |Ky> (CP=-1) 2 awxt (CP = -1*-1*| =-1])
= Mg +R(A)
® There is a huge difference in available I'x — 2Z(A)
phasespace between the two (—~600x!) =

the CP even state will decay much faster

e Difference due to M(K% = 3M(T)

Mg — R(A)

® A has a large imaginary component!
& gihary P = T+ 2I(A)




AKO
K 1 B
Ks

K
Ky

Have a choice when ‘paraméierizing’ Ks and Ki:

l. in terms of K° and K°

2. in terms of K; and K3
Historically, ‘kaon physics’ has chosen 2, but in in ‘B
physics’ (next lectures!), the equivalent of | is very
much dominant (as €g=0, but still g# 1 & p#1...)

This tends to be very confusing...

What about CP-violation?

EVIDENCE FOR THE 27 DECAY OF THE K,° MESON*T

J. H. Christenson, J. W. Cmnin,'t V. L. Fitch,I and R, Turlzaty§
Princeton University, Princeton, New Jersey
(Received 10 July 1964)

three-body decays of the K,°. The presence of a
two-pion decay mode implies that the K,° meson
is not a pure eigenstate of CP, Expressed as
K,°=27"?[(Ky-Ko) +e(Ko+Ko)] then le|*=R 7174
where 7, and 7, are the K,° and K,° mean lives
and R is the branching ratio including decay to

two 7° Using R7 = 3R and the branching ratio
quoted above, |el =2,3x1078,

K1) =p|K°) - q|K7)
Ks) =p|K”) +¢ F>

(K| Kp) =1=qI” +p]* =1

p=1+c¢
€8 1

with |e| << 1




CP-violation with pendula

Realisation: differences between the K° and K°pendula
— Different moments of inertia m¢ 2 (m and/or ¢ different)

— Different coupling strengths (lever arm d different)
- corresponds to differences of V., and V,,* in mixing diagram

K, has unequal amounts of K%and KO
—> wait for K, and have a look!

Equal amounts of KOand KO 1™, o K°(t=0) - ata-
evolve differently o . KO(t =0) — nt7n~
> former eigenmodes now develop! 45 "%%%
(cf. CPLear Experiment) 0% Y
10
S
T K ;; pt




|s CP violation with pendula a perfect model?

 No!

— all mechanical devices are T invariant!

— if CP is violated and T is conserved:
- CPT is violated!

* |[n fact, we have modelled CPT violation!



Part 11: Neutrino flavor pendula \f

coupled pendula

for demonstrating
3-flavor neutrino
mixing as realized in
nature

Idea: Michael Kobel

built 2004 at Uni Bonn,
extended 2006 at TU Dresden
with variable mixing angles

and digital readout
http://neutrinopendel.tu-dresden.de



http://neutrinopendel.tu-dresden.de/

3-flavor neutrino mixing

‘v 1 0 oY ¢, 0 sge”) c,
v, |=10 Cn Sy 0 1 0 | -5,

V) O =S5 C23/\_513ei§ 0 ¢ O

s, 0
c, O

0 1,

© 03,0 C

atmos, beam
Vs,

PMNS mixing matrix

(w/o0 Majorana Phases)

» 3 Mixing angles: 0,,, 0,3, 03
* 1 CP-violating Dirac-Phase: &

solar, reactor




-
L

v flavor-oscillations

@ Each flavor (e.g. v,) is sum of mass eigenstates (v,, v,, v3)
@ Each mass eigenstate with fixed p has a different phase frequency o,
a exp(int) = exp(iEt) = exp(i( (p2+m2)t) ~ exp(ipt+im2t/2p+...)

1 - ———I—-}
Ve vy AVAVAVAY Ve
1 - EAVAVAVAVAN v
3 - R .

o The differences Aw;; ~ |[m;#- m;?| =: Am,?|ead to flavor oscillations
@ Am,;# determines the oscillation period
@ 0., determines the oscillation amplitude

{= LTt E
|m3-m3|

L, =2.5m—Mev)
’ Amg(eV*)




Current values
cf. global fit Th.Schwetz et al., NJP 10 (2008)

Am?2,,=2,4 x 103 eV? Am? =25 x 103 eV? Am?2,,=0,08 x 103 eV?
Jfast® oscillation ,slow* oscillation
L,,=1kmx E(MeV) L,, =30 kmx E(MeV)
0,;=45°+ 3° 0,5<11° (90% CL) 0,,=33.5°+1.5°
em‘mos, beam 913, 0 esolar', reactor
@ consistent with so-called tri/bi-maximal mixing
(2 1 0 \
NIENE)
UPMNS ~ i i _ i
V6 3 2
11 1
\ V6 \/§ 2 ) Harrison, Perkins, Scott '99, 02

Z.Xing,'02, He, Zee, '03, Koide '03
Chang, Kang, Kim '04, Kang '04



A

Realisation as coupled pendula

. V3:( _VH+V‘C)/\/2

@ Vo= (Ve +V,+ V)3

@ vi=(2vo+Vv,+ Vv )Ne

normal
V: T

\p)  m
v, I

inverted hierarchy

V) T
v, I

v,

0)/27CA

46/min

43/min
42/min

P; I




Ray Davis o 2002

380000 |
Perchlorethylen
In der Homestake- Mine

: 37 37 -
/Average of 108 runs| v, +3C|l > Ar+ e

| Aussplilen des *"Ar (0.5 Atome/Tag)

« Dauvis: only sensitiv to v,
Result: Only 30% of
expected v, detected

Ar praduction rate (atoms per day)

Solar neutrino ca

ar




need for enhancement (MSW effect)

@ nuclear fusion: 100% v, leave the sun (w/o MSW effect)
4p > “He + 2e* + 2v_ + 27 MeV

@ “slow” oscillation via Am2,,and 6,,, pendula: weak coupling

. T/2 : :

o transition to (v, — v,,)/N2 not possible, since v, not in v;

@ oscillation only to (v, + v, )/\2

@ P(v.2 v.)>50% since just v, and v, count
- need for enhancement (MSW effect)

1282 SNU

SAGE i SALLEX

76*128NU 5.1*1.9%10%cm’s SNO NG
= : 10115

Home Kamio

Super-K SNO CC
stake  kande

I~ %sin‘zelz

0.5 «\ -
PSLEFV 045 MSW Eﬁekt 6l4t1lé%

04 34‘%
0.35 Am?=5.5 10~ cV? ‘

wh=044 S sin’e,

0.1 0.5 1 5 10
E, [MeV] o b



atmospheric neutrinos
SuperKamiokande 2000:

v und'?; aus m/K-Zerfillen

Atmosphare =

Number o[ﬁ.vents
=

Ml GeV ke | MiGIGEV ke
|~ noosc. look at v, and v, from air showers:
- VTV . .
* no deficit for v,
m : * clear deficit for v,

105 0005 11 05 0, 05 1 . fylly compatible with v,> v,

(C. Mc Grew, NOON 2000, Dez 2000)



described als v, Vv,
@ pendula:
Ve : weak couplingto v, v,
V,,: weak coupling to v,
strong coupling to v,

atmospheric neutrinos
@ SuperKamiokande 2000:

Number n[JEvents
=

- 1
",“

ulti-GeV e-like

no Osc.
— V.

-1 -0.5

Interactive Neutrino Oscillation Laboratory

Three Generations Meutrino Osc

illations

Adarm Para,

u pia a 0o 58 gy

cosH

m modification at a distance L=5000.0 km

Fermilab

#1 D*‘*(S} kim

f
2.6

3.0

Mixing Matrix
1=0.166
2=10.333 0.816 0577 0.0
3=0.500 -0.40 0877 0.ra7
0.408 -0.87 o.rov
composition of the
initial neutrina 1 2 3

interms of mass eigenstates

1 1
35 a5

e =0.009
=) MU=
rmu tau=0.990
tau

composition of the
3.0 GeW flux at 5000, kim
in terrms of lavar states

http://minos.phy.bnl.gov/nu-osc-lab/Superposition1.html

Gef

{
4.9



Modify 6,, \/

@ Non-maximal mixing of v, and v_ 7
@ v;=( —v,+Vv,)N2 no longer eigenmodeg
""*.nnnnu“"I|
iy, Uy,
. .-illlIIIIII.IIIIIHIIIIIII||IIIIIIIII|IIIIII;:”I||I|1-5‘-H!|”II!IIIIIII|IIIIIII|IIIIII|II||IIIII-|IIIIIII!!-.

Possible range: 0,, smaller '-II:[||||||zi||”“":

300 < 0,, < 60° 0,, larger 'Iu”nnuu”l‘ ij
@ http://neutrinopendel.tu-dresden.de M @

\/ 1 07 (51 krm

Abbildung 53: Atmosphérische Neutrino-Oszillation mit =0,98rad (56,2°), Java-Applet.


http://neutrinopendel.tu-dresden.de/

Modify 6,,

;-’;g.’/
@ Modify fraction of v, in v;and v,

@ Vo=(—Vet+V,+ vr)/\/3 no longer eigenmode

]

L
|||||I|"I|||
S ”?"”'iIIili””“lh'""' i

Possible range: 0,, smaller ¥|||||l|.|=||||||;|
20°< 0, < 55° 0,, larger P

@ hitp://neutrinopendel.tu-dresden.de (J. Pausch) @

0.9 15
1 P55 krn
Abbildung 27: Sonnennpeutrino-Oszillation mit &,,=0,57rad (33°), Java-Applet.

0 0z 0 04 05 06 07 08 08 10
1 05(5) km

Abbildung 28: Sonnenneutrino-Oszillation mit &,,=0,7854rad (45°), Java-Applet.

I
i']"""lu“l

1
(T |‘-!I||||||i”|u|.|| T



http://neutrinopendel.tu-dresden.de/

Modify 0, ,%f

"
@ v, presentin v; ~(sinO;;v, — v, +v,)
@ v, can now excite (v.—v,) mode,
IndUCIng faSt VT_ V],l mOdUIatlon .—iIIIHIIIIIIIIIIII}HIIHIIIIIIIF'-.
LTI EECIRERNECACTOCTRL R
Possible range: 613 smaller F
LTI T )
-6° < 0,;<6° 0,5 larger
@ Reactor neutrinos (2 MeV) @ @

0 5in0,;=0.10 (0, =69

Appearancel/dizappearance probability as a function of distance, for Enu=0.0020 Ge¥

6 sin0,;=0.20 (0, =12°)

Appearancefdisappearance probahility as a function of distance, for Enu = 0.0020 Ge¥

#1070 kim



o reactor v, > v, + v, disappearance and
atmospheric " - V. appearance
o ,slow” directly via Am,, (weak coupling)
@ ,fast® modulation via v_— v, with Am,;, (strong coupling)

Interactive Neutrino Oscillation Laboratory

Three Generations Meutrina O=cillations Adam Para, Fermilab

Appearancefdisappearance probability a5 a function of distance, for Enu = 2.0 GeV

#1107 (30 Kim

sin 6,3=0.1
/sin22913 = 0.04

4.4 19

Gel

Mixing Matrix

1=0217 e =0.029

2=0.287 0812 0.574 =

3=0.495 -0.46 0.536 tau= 0.970
0.350 -0.61

composition ofthe composition ofthe

initial neutring 1 2 3 3.0 Gev flux at 5000, km

interms of mass eigenstates intarms of flavar states



Are neutrino pendula a perfect model?

@ Few “features’
@ Need “creative” sign convention, leading to
a imperfection for understanding sequence of masses

@ imperfection for 0,4, # 45°
- some (v,— v, ) presentin v,and v,
- but vy 2 (v,—v) still not possible!

@ Else perfect!

The END !
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