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Direct Detection of WIMPs: principle

WIMP

WIMP • Elastic collision between WIMPs and target nuclei

• The recoil energy of the nucleus is:

• q = momentum transfer

• µ = reduced mass (mN = nucleus mass; mΧ = WIMP mass)

• v = mean WIMP-velocity relative to the target

• θ = scattering angle in the center of mass system

µ =
mχmN

mχ +mN

 

ER =
q 2

2mN

=
µ2v2

mN

(1− cosθ)

 

q 2 = 2µ2v2 (1− cosθ)

ER
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• For now strongly simplified:

• N = number of target nuclei in a detector

• ρχ = local density of the dark matter in the Milky Way

• <v> = mean WIMP velocity relative to the target

• mχ = WIMP-mass

• σχN =cross section for WIMP-nucleus elastic scattering

Expected Rates in a Detector

Particle physics

Astrophysics

R ∝ N
ρχ

mχ

σ χN ⋅ 〈v〉

4Friday, September 11, 2009



Local Density of WIMPs in the Milky Way

Data

bulge

Total

(Klypin, Zhao & Somerville 2002)

Sun

disk 

disk + bulge

dark halo

(MWIMP = 100 GeV)
 
ρχ  3000 WIMPs ⋅m−3

 
ρχ  0.3 GeVcm−3

ρhalo = 0.1− 0.7 GeVcm−3

ρdisk = 2 − 7 GeVcm−3

Particle data group:

‘Standard’ value:

WIMP flux on Earth: 
~ 105 cm-2s-1
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Expected Rates in a Detector

• The differential rate (still strongly simplified) is:

• R = event rate per unit mass

• ER = nuclear recoil energy

• R0 = total event rate

• E0 = most probable energy of WIMPs 

(Maxwell-Boltzmann distribution)

• r = kinematic factor

dR
dER

=
R0
E0r

e
−
ER
E0r

ER

lo
g(

dR
/E

R
)

r =
4mχmN

(mχ + mN )
2

dR
dER

dER0

∞

∫ = R0

〈ER 〉 = ER
dR
dER

dER0

∞

∫ = E0r

differential energy spectrum: 
featureless
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Some Typical Numbers

• We assume that the WIMP mass and the nucleus mass are identical:

mχ = mN = 100 GeV ⋅ c−2

⇒ r =
4mχmN

(mχ + mN )
2 = 1

 v  220 km s-1 = 0.75 ×10−3c

〈ER 〉 = E0 =
1
2
mχv2

〈ER 〉 =
1
2

100GeV
c2 (0.75 ×10−3c)2

〈ER 〉 ≈ 30 keV

kinematic factor

mean WIMP velocity relative to target 
(halo is stationary, Sun moves through halo)

mean recoil energy deposited in a detector
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Expected Rates in a Detector

• We have to take into account following facts:

➡The WIMPs will have a velocity distribution f(v)

➡ the detector is on Earth, which moves around the Sun, which moves around the galactic center

➡ the cross section depends on whether the interaction is spin-independent (SI), or spin-dependent (SD)

➡ the WIMPs scatter on nuclei, which have a finite size; we have to consider form-factor corrections < 1 
(different for SI and SD interactions)

➡ the nuclear recoil energy is not necessarily the observed energy, since in general the detection 
efficiency is < 1

➡detectors have a certain energy resolution and energy threshold

spectral function
(masses and kinematics) form factor correction type of interaction

⇒
dR
dER

= R0S(ER )F
2 (ER )I

observed  diff. rate

8Friday, September 11, 2009



Kinematics

• WIMPs with velocity v and incident kinetic energy                      which are scattered under an angle 

θ in the center of mass system, will yield a recoil energy ER in the laboratory system:

Ei =
1
2
mχv

2

ER = Eir
(1− cosθ)

2

r =
4µ2

mχmN

=
4mχmN

(mχ + mN )
2

µ =
mχmN

mχ + mN
reduced mass

θ
θ
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Kinematics

• Assumption: the scattering is isotropic =>  uniform in cos(θ)

• An incoming WIMP with energy Ei will deliver recoil energies uniformly in:

• We had looked at the case with r = 1 (equal masses), a stationary target and θ=180º (head-on collision)

• How does the overall spectrum look like?  We will sample the incident spectrum.                                        

In each interval                                 we will have a contribution  to the spectrum  in                              at 

rate               of

ER = Ei

0 ≤ ER ≤ Eir

Ei → Ei + dEi ER → ER + dER

dR(Ei )

d
dR
dER

(ER )
⎛
⎝⎜

⎞
⎠⎟
=
dR(Ei )
Eir

ER

lo
g(

dR
/E

R
)

dR(Ei)

Eir
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Kinematics

• We have to integrate over all incoming WIMP energies:

• For Emax: we will use as maximum speed either ∞ or vesc  (we will discuss this later)

• For Emin: to deposit a certain recoil energy ER, we need an incident WIMP energy:

• We will now determine the differential rate.

ER

lo
g(

dR
/E

R
)

dR(Ei)

Eir

dR
dER

(ER ) =
dR(Ei )
EirEmin

Emax

∫

Ei ≥
ER

r
≡ Emin
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Coordinate System

galaxy

collision kinematics

galaxy dynamics

 

vχ ,gal
 

vEarth,gal

 

vχ ,gal=
vχ ,Earth +

vEarth,gal
vχ ,gal=

v + vE

 
f (v,vE ) = e

−
v+ vE( )2
v0
2

Maxwell-Boltzmann velocity distribution

 

v=vχ ,Earth = WIMP velocity in the target (Earth) frame
vE =

vEarth,gal = Earth velocity in the Galaxy frame
vχ ,gal = WIMP velocity in the Galaxy frame

v0 ≈ 220 km s-1
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Differential Rate

• The event rate per unit mass in a detector with nuclear mass number A is: 

➡NA =6.022×1026 kg-1 Avogadro number 

➡σ = cross section for the scattering on the nucleus

• The differential particle density dn is taken as a function of the velocity v:

• with the mean WIMP number density

➡ v = velocity relative to the target (which is on Earth)

➡ vE = Earth velocity (and thus target velocity) relative to the dark matter distribution

dR =
NA

A
σ  v dn

 

dn =
n0
k
f (v,vE )d

3v

n0 =
ρχ

mχ

volume σ⋅v swept per 
unit of time contains dn(v) 
particles with velocity v
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Differential Rate

• k is a normalization constant, so that:

• where vesc = local galactic escape velocity  ( ≈ 544 km/s)

• this means: 

• We assume a Maxwell-Boltzmann WIMP velocity distribution with respect to the galactic frame:

dn
0

vesc∫ ≡ n0

 
k = f∫ (v,vE )d

3v

 
k = dφ

0

2π

∫ d(cosθ)
−1

+1

∫ f (v,vE )v
2dv

0

vesc∫

 
f (v,vE ) = e

−
(v+vE )

2

v0
2

 
v+vE

WIMP velocity in 
the galaxy frame

WIMP velocity 
distribution

v0 ≈ 220 km s-1

mean WIMP 
number density
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Differential Rate

• We first look at the simplified case of a stationary Earth vE = 0 and vesc = ∞

• For this case, we have:

• and thus

• with the total rate R0 per unit mass (vE = 0 and vesc = ∞) being defined as:

dR = R0
1

2πv0
4 vf (v,0)d

3v

 
k = k0 = dφ

0

2π

∫ d(cosθ)
−1

+1

∫ e
−
(v+0)2

v0
2

v2dv
0

∞

∫ = 4π e
−
(v)2

v0
2

v2dv
0

∞

∫ = (πv0
2 )3/2

R0 =
2
π
NA

A
ρχ

mχ

σ 0  v0
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Differential Rate

• For a Maxwell-Boltzmann distribution

• isotropic:

• and with the incident (Ei), and most probable energy (E0) of WIMPs:

• we obtain for the differential rate:

 

dR
dER

(ER ) =
dR(Ei )
EirER /r

∞

∫ =
R0

r 1
2
mχv0

2⎛
⎝⎜

⎞
⎠⎟
2 e

−
(v)2

v0
2

vdv
vmin

∞

∫ =
R0
E0r

e
−
ER
E0r

f (v,0) = e
−
v2

v0
2

d 3v→ 4πv2dv

Ei =
1
2
mχv2   and    E0 =

1
2
mχv0

2

vmin =
2ER

r ⋅mχ
simplified expression which 

we introduced at the beginning
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1. Correction: galactic escape velocity vesc

• For a finite escape velocity vesc (and still vE =0) 

• we obtain for the differential rate: 

• Example: if we use the value vesc ~ 600 km/s*, and v0 = 220 km/s, we obtain:

• and for mχ = mN = 100 GeV => maximum ER = 200 keV

➡ cutoff energy >> mean recoil energy <ER> ≈ 30 keV

 

v+vE = vesc

dR
dER

=
k0

k1(vesc ,0)
R0
E0r

e
−
ER
E0r − e

−
(vesc )

2

v0
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

k0
k1

= 0.9965

WIMP velocity in 
the galaxy frame

R(0,vesc )
R0

= 0.9948 * vesc = 462 - 640 km/s with 90% CL 
(data from RAVE survey, MNRAS 379, 2007)
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2. Correction: velocity of the Earth vE

• Clearly the Earth is moving, thus vE ≠ 0, and vE ~ v0 ≈ 220 km/s

• A complete calculation yields (see Appendix in Ref [5]):

• with the error function being defines as: 

• and:

dR
dER

=
k0

k1

R0

E0r
πv0

4vE

erf
vmin + vE

v0

⎛
⎝⎜

⎞
⎠⎟
− erf

vmin - vE

v0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − e

−
(vesc )2

v0
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

erf (x) = 2
π

e− t
2

dt
0

x

∫

vmin = v0
ER
E0r

k1 = k0 erf
vesc
v0

⎛
⎝⎜

⎞
⎠⎟
−
2
π
vesc
v0
e

−
(vesc )

2

v0
2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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• The velocity of the Earth varies over the year as the Earth moves around the Sun,  and can be written as 
[in km/s]:

• t = days since January 1st 
• tp = 2. June (152.5 d) ± 1.3 d; 1 yr = 362.25 d

• the velocity modulation gives rise to a ~ 3% modulation in the rate                                          (for vE ~v0)

Signal Modulation: Annual Effect

vE (t) = v0 1.05 + 0.07cos
2π (t − t p )
1yr

⎡

⎣
⎢

⎤

⎦
⎥

June
v0

galactic center

Sun 220 km/s 
December

ER

lo
g(

dR
/E

R
)

December

June

±3%

95

97

99

101

103

105

-0.5 -0.1 0.3 0.7 1.1 1.5

JuneJuneDec Dec

 

d
dvE

R
R0

⎛
⎝⎜

⎞
⎠⎟

1
2vE

R
R0

seasonal variation of the rate spectrum

ra
te

 [a
rb

. u
ni

ts
]

we need ~ 1000 events 
to detect the variation
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Signal Modulation: Recoil Direction

WIMP wind
v0 solar motion N

The motion of the detector with respected to the Galactic rest frame produces a directional signal: the WIMP flux 
in the laboratory frame is sharply peaked in the direction of motion of the Earth; this results in a recoil spectrum 
which is also peaked in this direction.

WIMP WIMP

Nuclear recoil

WIMP wind

v0 solar motiontarget00:00 h
12:00 h

d 2R
dERd(cosθ)

=
1
2
R0
E0r

e
−
(vE cosθ −vmin )

2

v0
2

The differential angular spectrum is given by:

θ

⇒ asymmetry: more events in forward than in 
backward direction (about factor 10 difference)
→ few 10s-100s events need to distinguish 
between halo models [depending on the Eth of the 
detector and whether the detector can measure the 
sense of the recoil]
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Additional “Corrections” to the Differential Rate

• so far we have discussed the spectral function S(ER) 

• it contains the kinematic of the scattering, and the time dependence of the signal

• we now discuss

➡F2(ER): form factor corrections, with ER = q2/2mχ

➡ I: type of interaction

• in general, for NR particles (v << c) the scalar and axial vector interactions dominate; we will thus 

consider spin-independent and spin-dependent couplings

dR
dER

= R0S(ER )F
2 (ER )I
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Nuclear form factor and spin-independent couplings

• Scattering amplitude: Born approximation

• Spin-independent scattering is coherent

• with rn = nuclear radius, rn ≈ 1.2 A1/3 fm, s = 1fm (skin thickness)

!q = ! (!k′ − !k)

λ = !/q ∼ few fm

M(!q) = fn A

∫
d3x ρ(!x) ei !q·!x

︸ ︷︷ ︸
F (!q)

⇒ σ ∝ |M |2 ∝ A2

F (qrn) =
3[sin(qrn)− qrn cos(qrn)]

(qrn)3︸ ︷︷ ︸
j1(qrn)

e−(qs)2/2

Woods-Saxon Potential“Helm” form factor

fundamental 
couplings to 
nucleons

mass 
number

Fourier-transform of the 
density of scattering 
centers  

few fm
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• Loss of coherence as larger momentum transfers probes smaller scales:

A=130

Lewin & Smith; Engel et al
ER

F2(ER)

Nuclear form factor and spin-independent couplings

F2(q)

Xe

Ge

Ne
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Spin independent cross section

• The differential cross section can be written as:

• where σ0 = total cross section for F(q) = 1

• From Fermi’s Golden Rule it follows:

• We can then identify the total cross section σ0 for F(q)=1 as: 

dσ (q)
dq2

=
σ 0F

2 (q)
4µ2v2

dσ (q)
dq2

=
1

πv2
M 2 =

1
πv2

fn
2A2F2 (q)

σ 0 =
4µ2

π
fn
2A2 =

4
π
mn
2 fn

2 µ2

mn
2 A

2

}

σ n

cross section for 
scattering off nucleus

cross section for 
scattering on nucleons

dependence on particle 
physics model for WIMP

relative velocity in center-
of-mass frame
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• Putting now everything together:

Spin independent cross section and differential rate

dσ (q)
dq2

=
1

4mn
2v2

σ nA
2F2 (q)

dR
dER

=
R0
E0r

e
−
ER
E0r F2 (q)

σ 0 = σ n
A2

mn
2

mχmN

mχ + mN

⎛

⎝
⎜

⎞

⎠
⎟

2

detector

particle physics

dark matter halo

R0 =
2
π
NA

A
ρχ

mχ

σ 0  v0

differential cross section

differential recoil energy spectrum
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WIMP Mass and SI Cross Section

• Predictions from supersymmetry  [10-8 pb = 10-44 cm2]: 

WIMP mass [GeV/c2]

ne
ut

ra
lin

o-
nu

cl
eo

n 
S

I c
ro

ss
 s

ec
tio

n 
[c

m
2 ]

in the CMSSM model 

CMSSM2008 
(Roszkowski, Ruiz, Trotta)
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• Expected rates for different detector materials 

Spin independent cross section and differential rate

Recoil energy [keVr]

Di
ff.

 ra
te

 [e
ve

nt
s/

(k
g 

d 
ke

V)
]

ER [keV]

d
R

/d
E

R
 

MΧ = 100 GeV
σn = 4×10-43 cm2

from the dark matter halo from the dark matter thick disk (and halo)

disk

halo

Xe
Ge

MΧ = 100 GeV
σn = 5×10-44 cm2
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Nuclear form factor and spin dependent couplings

• For spin dependent couplings the scattering amplitude is dominated by the unpaired nucleon: 
the coupling is to the total nuclear spin J (paired nucleons ↑↓ tend to cancel):

• with: GF = Fermi constant, J = nuclear spin, F2(q) = form factor for spin dependent interactions

• and 

• ap, an: effective coupling of the WIMPs to protons and neutrons, typically α/mW2

• and the expectation values of the proton and neutron spins in the nucleus

dσ (q)
dq2

=
8

πv2
Λ2GF

2 J(J +1)F2 (q)

Λ =
1
J
ap Sp + an Sn⎡⎣ ⎤⎦

Sp,n = N Sp,n N measure the amount of spin carried by 
the p- and n-groups inside the nucleus
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Nuclear form factor and spin dependent couplings

• Form factor example: simplified, based on model with valence nucleons in a thin shell:

• Better: detailed calculations based on 

realistic nuclear models

-for instance, the conventional nuclear 

shell model using reasonable nuclear 

Hamiltonians

- cross check by agreement of predicted 

versus measured magnetic moment of 

the nucleus (since the matrix element for 

χN scattering is similar to the magnetic

moment operator)

Lewin & Smith; Engel et al

131Xe

F (qrn) = j0(qrn) =
sin(qrn)

qrn

131Xe
single 
particle 
model

e−(qrn )
2/3 /3

sin(qrn )
qrn

⎡

⎣
⎢

⎤

⎦
⎥

2
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WIMP Mass and SD Cross Section

• Predictions from supersymmetry  [10-8 pb = 10-44 cm2]: 

in the CMSSM model 

neutralino-nucleon SI cross section [cm2]

ne
ut

ra
lin

o-
nu

cl
eo

n 
S

D
 c

ro
ss

 s
ec

tio
n 

[c
m

2 ]
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Summary: Signal Characteristics of a WIMP

• A2 - dependence of rates 

• coherence loss (for q~µv ~ 1/rn ~ 200 MeV)

• relative rates, for instance in Ge/Si, Ar/Xe,...

• dependance on WIMP mass

• time dependence of the signal (annual, diurnal)
I/Xe

Ge

Si

 ER (keV)

dR
/d

E R different mΧ for mN = 73
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Detection of WIMPs: Signal and Backgrounds

Χ gamma

Electron

Signal (WIMPs) Background (gamma-, beta-radiation)

gammaΧ

Recoiling nucleus

v/c ≈ 7 x 10-4

ER ≈ 10 keV

v/c ≈ 0.3
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Quenching Factor and Discrimination

• WIMPs (and neutrons) scatter off nuclei

• Most background noise sources (gammas, electrons) scatter off electrons

• Detectors have a different response to nuclear recoils than to electron recoils

• Quenching factor (QF) = describes the difference in the amount of visible energy in a 
detector for these two classes of events

➡ keVee = measured signal from an electron recoil

➡ keVr = measured signal from a nuclear recoil

• For nuclear recoil events:

• The two energy scales are calibrated with gamma (57Co, 133Ba, 137Cs, 60Co, etc) and neutron 
(AmBe, 252Cf, n-generator, etc) sources

Evisible(keVee) = QF × Erecoil (keVr)
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Quenching Factor and Discrimination

• The quenching factor allows to distinguish between electron and nuclear recoils if two 
simultaneous detection mechanisms are used

• Example:

• charge and phonons in Ge

• Evisible ~ 1/3 Erecoil for nuclear recoils

➡ QF ~ 30% in Ge

• ER = background 

• NR = WIMPs (or neutron backgrounds)

0

0.3

0.6

0.9

1.2

1.5

0 20 40 60 80 100

Recoil energy

Ch
ar

ge
/p

ho
no

ns

Electron recoils (ER)

Nuclear recoils (NR)
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Backgrounds in Dark Matter Detectors

• Radioactivity of surroundings 

• Radioactivity of detector and shield materials

• Cosmic rays and secondary reactions

• Remember: activity of a source

• Do you know?

A =
dN
dt

= −λN
N = number of radioactive nuclei
λ = decay constant, T1/2 = ln2/λ=ln2 τ
[A] = Bq = 1 decay/s (1Ci = 3.7 x 1010 
decays/s = A [1g pure 226Ra])

35Friday, September 11, 2009



Backgrounds in Dark Matter Detectors

• Radioactivity of surroundings 

• Radioactivity of detector and shield materials

• Cosmic rays and secondary reactions

• Remember: activity of a source

• Do you know?

A =
dN
dt

= −λN
N = number of radioactive nuclei
λ = decay constant, T1/2 = ln2/λ=ln2 τ
[A] = Bq = 1 decay/s (1Ci = 3.7 x 1010 
decays/s = A [1g pure 226Ra])

1. how much radioactivity (in Bq) is in your body? where from?

2. how many radon atoms escape per 1 m2 of ground, per s?

3. how many plutonium atoms you find in 1 kg of soil?
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1. 4000 Bq from 14C, 4000 Bq from 40K (e- + 400 1.4 MeV γ + 8000 νe)

2. 7000 atoms/m2 s

3. 10 millions (transmutation of 238U by fast CR neutrons), soil: 1 - 3 mg U per kg

Backgrounds in Dark Matter Detectors

• Radioactivity of surroundings 

• Radioactivity of detector and shield materials

• Cosmic rays and secondary reactions

• Remember: activity of a source

• Do you know?

A =
dN
dt

= −λN
N = number of radioactive nuclei
λ = decay constant, T1/2 = ln2/λ=ln2 τ
[A] = Bq = 1 decay/s (1Ci = 3.7 x 1010 
decays/s = A [1g pure 226Ra])

1. how much radioactivity (in Bq) is in your body? where from?

2. how many radon atoms escape per 1 m2 of ground, per s?

3. how many plutonium atoms you find in 1 kg of soil?
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Backgrounds in Dark Matter Detectors

• External, natural radioactivity: 238U, 238Th, 40K decays in rock and concrete walls of the 
laboratory => mostly gammas and neutrons from (α,n) and fission reactions

• Radon decays in air: 

➡ passive shields: Pb against the gammas, polyethylene/water against neutrons

➡ active shields: large water Cerenkov detectors or scintillators for gammas and neutrons

Ge detector 
underground, 
no shield

Ge detector 
underground, 
Pb shield and 
purge for Rn
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Backgrounds in Dark Matter Detectors

• Internal radioactivity: 238U, 238Th, 40K, 137Cs, 60Co, 39Ar, 85Kr, ... decays in the detector 
materials, target medium and shields

• Ultra-pure Ge spectrometers (as well as other methods) are used to screen the materials 
before using them in a detector, down to parts-per-billion (ppb) (or lower) levels

ev
en

ts
/(

kg
 d

ay
 k

eV
)

PMT sample
HPGe detector
background
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n produced by fission and (α,n)

n produced by µ

muons

Flux of cosmic ray secondaries and 
tertiary-produced neutrons in a typical 
Pb shield vs shielding depth 
Gerd Heusser, 1995

hadrons

Backgrounds in Dark Matter Detectors

• Cosmic rays and secondary/tertiary particles: go underground!

• Hadronic component (n, p): reduced by few meter water equivalent (mwe)
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• Most problematic: muons and muon induced neutrons 

➡go deep underground, several laboratories, worldwide

Backgrounds in Dark Matter Detectors

101

102

103

104

105

106

M
uo

n 
In

te
ns

ity
, m

-2
 y

-1

5 6 7 8 9
103

2 3 4 5 6 7 8 9
104

Depth, meters water equivalent

Soudan

Kamioka

Gran Sasso

Homestake
 (Chlorine) Baksan

Mont Blanc

Sudbury 

WIPP 

Muon flux vs overburden

NUSL - Homestake

 Proposed NUSL Homestake
 Current Laboratories

compiled by: R. Gaitskell
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Backgrounds in Dark Matter Detectors

• Activation of detector and other materials during production and transportation at the Earth’s 
surface. A precise calculation requires:

➡ cosmic ray spectrum (varies with geomagnetic latitude)

➡ cross section for the production of isotopes (only few are directly measured)

• production is dominated by (n,x) reactions (95%) and (p,x) reactions (5%)

Isotope Decay Half life Energy in Ge [keV] Activity [μBq/kg]
3H β- 12.33 yr Emax(β-)=18.6 2
49V EC 330 d EK(Ti) = 5 1.6
54Mn EC, β+ 312 d EK(Cr) = 5.4, Eγ=841 0.95
55Fe EC 2.7 yr EK(Mn) = 6 0.66
57Co EC 272 d EK(Fe)=6.4, Eγ=128 1.3
60Co β- 5.3 yr Emax(β-)=318, Eγ=1173,1333 0.2
63Ni β- 100 yr Emax(β-)=67 0.009
65Zn EC, β+ 244 d EK(Cu) = 9, Eγ=1125 9.2
68Ge EC 271 d EK(Ga) = 10.4 172

production 
in Ge after 
30d exposure 
at the Earthʼs 
surface and 
1 yr storage 
below ground
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Neutron Backgrounds

• MeV neutrons can mimic WIMPs by elastically scattering from the target nuclei

• the rates of neutrons from detector materials and rock are calculated taking into account 
the exact material composition, the α energies and cross sections for (α,n) and fission 
reactions and the measured U/Th contents

neutrons from rock (238U) neutrons from poly shield (238U)
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Neutrons: how can we distinguish them from WIMPs?

➡  mean free path of few cm (neutrons) versus 1010 m (WIMP)

➡  material dependence of differential recoil spectrum

➡  time dependence of WIMP signal (if neutron background is measured to be constant in time) 

WIMPs, Mχ = 40 GeV Background neutrons

Si

Si

Ge

Ge

WIMP signal ~ A2
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Detector strategies

Aggressively reduce the 
absolute background

Background reduction 
by pulse shape analysis 
and/or self-shielding

Background rejection 
based on simultaneous 
detection of two signals

Other detector strategies

State of the art:
(primary goal is 0νββ decay):

Heidelberg-Moscow
HDMS
IGEX

Near future projects:
GERDA
MAJORANA

Large mass, simple 
detectors: 

NaI (DAMA, LIBRA, 
ANAIS, NAIAD)  
CsI (KIMS)

Large liquid noble gas 
detectors:
XMASS, CLEAN, DEAP

Charge/phonon 
(CDMS, EDELWEISS, 
SuperCDMS, EURECA)
 
Light/phonon
(CRESST, ROSEBUD, 
EURECA) 

Charge/light
(XENON, ZEPLIN, LUX, 
ArDM, WARP, DARWIN)

Large bubble chambers 
- insensitive to 
electromagnetic 
background (COUPP, 
PICASSO)

Low-pressure gas 
detectors, sensitive to 
the direction of the 
nuclear recoil (DRIFT, 
DMTPC, NEWAGE)

In addition: 
→ reject multiple scattered events and events close to detector boundaries
→ look for an annual and a diurnal modulation in the event rate
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End
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