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Abstract

These lecture notes give an introduction to cosmology fgh{gnergy physi-
cists. The content is otherwise orthodox. | introduce trenalogical princi-
ple, the basic equations, and the data that underly our siasheling of the uni-
verse. Then | focus on the early universe, discuss nucld¢ossis, the WIMP
paradigm of dark matter, and the principles of baryogendsie last two sec-
tions introduce elementary aspects of large-scale steiébumation, and their
relation to inflation. | apologise for not giving much refece to the origi-
nal literature, but | point the reader to other reviews otusz notes for more
details or insights.

1 The Cosmological Principle

When we watch the sky at night, we see stars, the Milky Way, Bt if we blur the picture a little,
we would agree that there seems to be no preferred direclibis isotropy together with the alleged
Copernician principle —which states that the Earth holdspecial place— has led to assume that the
Universe is homogeneous on large scales. This hypothediied ¢theCosmological Principlehas been
central to the development of modern cosmology, startirtd thie static universe of Einstein which, he
assumed, should be uniform both in space and in time (seadtarice Ref.[1] and [2] for history).

Isotropy and homogeneity are clearly different conceptser& are systems which are isotropic
but not homogeneous and the other way around. Howeverppotiround any two points implies

homogeneity, as Fig. 1 suggests.

Fig. 1: Isotropy around A and B means that physical conditions (smsitly or temperature) are the same on the
two circles and thus on any circle and so implies homogeneity

The Cosmological Principle is well supported by observetidn particular:

- The isotropy of cosmological signals (most remarkablydbsmic microwave background radi-
ation (CMBR)).

- The large-scale distribution of matter (large-scalecitres).
- The recession of distant galaxies (Hubble’s law).
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The CMBR, discovered in 1965, is a spectrum of electromagmnatliation that peaks in the microwave
range f ~ 2 mm) and that fills the universe. In the early 1990s, the FIRASument on board ot the
COBE satellite established that this radiation has an dlpergect black body spectrum at temperature
T =2.725K (see Fig. 2). This discovery brought to an end work orgtieady-State modeln alternative

to the Big Bang. The CMBR signal is very isotropic. There isifgote at the leveQ = AT /T ~ 103
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Fig. 2: The spectrum of the CMBR (FIRAS). Errors have been enlargaalfactor of 400.

that is interpreted as a Doppler effect caused by motion seipect to the frame of reference in which
the CMBR signal is isotropic. There are also higher multispbut at a much smaller levé),~ 107°.
Their significance will be discussed in Section 7.

Further evidence of isotropy is provided by studies of ttstritiution of galaxies (Fig. 3) or other
extragalactic objects, like gamma-ray bursts (Fig. 4). v8ys in redshift, like the Las Campanas

Fig. 3: The APM survey shows the distribution of density of galaxiethe sky (about 19galaxies, the brighter
the colour, the higher the density).

Redshift Survey or the 2dF survey (Fig. 5) show that the a@eedistribution of galaxies is uniform.
There are structures in these maps but the density contleh¢dA = dp/p wherep is the energy
density of matter) i\ < 1 on scales beyong 100 Mpc?. This is shown in Fig. 6 using a compilation
of (somewhat old) data [3].

The law of recession of galaxies was formulated by Hubble9iP9] using cepheid stars to mea-

1The parsec (1 pe- 3.3 light-years) is a unit of distance much used in astronont/siiti common in cosmology. Seen
from an object at 1 pc, the Sun-Earth distance (1 AU =-1%8 km) would sustain an angle of 1 sec.
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Fig. 4: The gamma-ray burst angular distribution measured by BATSE
(http://www.batse.msfc.nasa.gov/batse/grb/)
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Fig. 5: Map of the 2dF redshift survey Fig. 6: Power spectrum of mass fluctuatiofis(A?),
(http://www2.aa0.gov.au/2dFGRS/) wherehis as in (3).

sure cosmic distances. Measurements of spectra of galstximeed a systematic increase of measured
wavelengths\, with respect to those observed in the laborathyyDefining the redshift parameter
Ao—A
7= [0} e
Ae

gives
zc=Hod 1)

whered is the distance to the observed galaxys the speed of light, andy ~ 500 kms™t- Mpc~1 is
the Hubble parameter (the value quoted is that measured bpleju If the redshift is interpreted as a
Doppler effect due to motion of the galaxy,c ~ z for non-relativistic motion, we get the Hubble law,

v =Hod, (2

which states that galaxies recess with a velocity propomtb to their distance. This motion is an av-
erage, as the velocity of galaxies at fixed distance arghligtd around the mean given by the Hubble
flow. The difference is called the peculiar velocity. Fogkudistances, the ratio of the peculiar velocity
to the Hubble velocity is small but for neighbouring galaxiee dispersion is important. Figure 7 shows
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Fig. 7: The first Hubble diagramHg ~ 500 km- Fig. 8: A modern Hubble diagramHg = 64km-s*-
s1.Mpc L MpcL.

the historic data. Figure 8 is a contemporary Hubble diagrahe giant leap in distances between the
two figures has been achieved by using a class of supernafée(type la or Snla for short) as standard
candle to measure cosmic distances. It is the use of Snlddsded to the conclusion that the expan-
sion of the universe is accelerating (see Section 3). To foutigandles has always been a problem in
cosmology and Snla are no exception (see, for instancg4Ref.references in Ref.[5]).

In the sequel we will use
Ho = h100km-s™*-Mpc™t with h~ 0.7 ()

For estimates takie~ 2/3 andh? ~ 1/2.

What is the relation between the Hubble law and the cosmcddgirinciple? There are two quite
different interpretations of the Hubble law. The first on¢hiat we are at the centre a sort of explosion
and that the galaxies move away from us. The alternativepregtion is that there are no privileged
observers. The system is uniform (there are an infinite nurobeentres) and galaxies are moving
away from each others. The classical illustration is a ballbeing inflated (we live on the surface of the
balloon). Equivalently take a system of galaxies and asgshatéheir their peculiar velocity is negligible
(ideal galaxies). The position of these ideal galaxies desfim system of coordinates called comoving
coordinates, that is a system of coordinates in which theyasirest. Motion is taken into account by
introducing a scale facta(t) which depends only on time (which we will call the age of thévarse).
That the Hubble law holds is shown in Fig. 9. It is easy to wetifat thev (1 d is the only possible
motion consistent with the cosmological principéed, v [ d* would not work).

An immediate consequence of the Hubble law is that if we sevéhne flow and go back in time
there would be a time at which the galaxies were infinitelselto each other. The time scale for this is
given by the inverse of the Hubble parametiyr

1/Ho =h"19.78. 10°years

Forh~ 2/3, we get ¥Ho ~ 15- 10° years, which is older than the age of the globular clustet2- 10°
years) the oldest system of stars. In the days of Hubbley & 2- 10° years, which was less than the
age of the Earth (for a history of measurements of the Hubdnlameter see, for example, [6]).

If vwas constant (that is to say for a galaxy at comoving dista))dé ! would indeed be the age
of the universe, since

v=const=4(t)x— a(t) Ot — H(t) = a(t)/at) = 1/t,
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Fig. 9: A one-dimensional derivation of the Hubble law from the @nluction of a uniform scale factaqt).
Things are depicted from the point of A but the same resuliiflom the point oB(), C(), etc.

choosing the origin of time so thaf0) = 0. Constant velocity is free motion. Gravity is an attraetiv
force and thus we should expect that attraction betweerxigalavill slow their collective motion. Con-
sequently, the age of the universe should be less than the esiimatedy = 1/Ho. To verify this, we
need the equations that describes our system of galaxiegelbhas everything else that might fill the
universe.

2 Basic equations

We now write down the basic equations describing a perfdaiiyjogeneous and isotropic expanding
universe. Small perturbations will be discussed in Sestiband 8.

The fist thing we need is a convenient system of coordinatetesoribe the spacetime of our
(idealized) universe. Spatial slices or sections in sjiaeetre taken to be isotropic and homogeneous.
By definition physical conditions (say some energy dengifyare constant on each slice. As in the
previous section, we take the positions of ideal galaxies (ith no peculiar motion) to define comoving
coordinates. Here we use spherical comoving coordingte®, ¢ ) and our galaxy is put at the origin of
coordinates. As for time, we make use of the fact that theelafproper time measured by any ideal
(last time) galaxy between a spatial slice with physicalditions A (saypa) and B (g) is a universal
guantity. Hence we take our proper time as a universal coateliof timet and call it the ‘age of the
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universe’. The age today is written with the subsceptqg t(today = to (likewise Hg is the Hubble
parameter today). Finally the collective motion (Hubblevfigs implemented through the scale factor
a(t) that we normalize t@(ty) = ap = 1 today. Hence the physical distantoglay between our galaxy
and a galaxy B is given byg, Fig. 10. For any time, the physical distargieis given by

time O worldline A worldline

A

Galaxy B omoving coordinate x,

Comoving coordinate

Fig. 10: System of comoving coordinates for ideal galaxies, galaxies at rest in comoving coordinates. Since
space is homogeneous, a universal time of coordinate (‘Afeeauniverse’) is provided by the proper time of
comoving observers. At eaththe physical distance between a galaxy (us) at the origiresuother one is given

bya(t)x.

de(t) = alt)X .

Taking the time derivative gives the Hubble law
; . a
v=dp=a(t)x = aa(t)x =Hdp

This relation between velocity and physical distancexiact(compare with (2) obtained from the obser-
vation of redshift and the non-relativistic expressionted Doppler effect) but holds only if we use the
distancedp (Section 3).

According to General Relativity (GR) —the framework that sk@uld really use to describe the
universe as a whole— energy/matter curves spacetime amgersely, the shape of spacetime tells
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energy/matter how to move. The basic building block of GRhis netric of spacetime. This metric
takes a very simple form for an isotropic and uniform unieers/sing our coordinateg, x,6,¢), an
infinitesimal spacetime interval reads

ds? = dt? —a(t)?dI?,
wheredl is an infinitesimal comoving distance interval. The lattas ko be consistent with the isotropy
and homogeneity of spateCorrespondingly the geometry of a space slice does notthdeeuclidean.
Actually there exists three isotropic and homogeneous géwes and the corresponding spacetime met-
rics are called the Robertson-Walker mettic¥he spatial geometries correspond to the equivalent in

three dimensions of the sphere, the plane, and the hyperplalne. These are surfaces of constant
curvature, note& (for a sphere of radiuR, K = 1/R?) and

dI2 = dx?+ S2(x)(d6? +sir? 6d¢?)

with (drawing the analogs of the geometries in two dimersimn the sake of illustration)
- Flat spaceK =0

- Spherical space&k > 0

(6]
S( )—isin\/R
X UK X ‘
B A

a+B+y>m,

- Hyperbolic spaceK < 0

O
a
1
NES

S(x)= sinhv/—Kx

a+pB+y<m.

2Here we make a conceptual jump: we no longer think of galaxiesotion but rather we shall interpret the Hubble flow
as being caused by the expansion of the universe itself.

3Standard caveat: we discuss only the geometry of spacetsnimpology. For instance, space could be flat, but curled,
like a three-dimensional torus. This may be, but we assumethat the radii of such a torus are much larger than thedarge
distance yet accessed in our universe —to be called thedmoriz



These geometries are all isotropic and homogeneous. Thbieds for the plane and the sphere. In the
latter case curvature is jut = 1/R?> whereR is the radius of the sphere (remember, we lrethe
sphere). The plane corresponds to the liRiit> co. The hyperbolic plane is less obvious but it really is
the same as the sphere if we take an imaginary raliusiR (see also the Escher-like drawing. This is
the Lobachevsky represtation of the hyperbolic plane)

A nice feature of the coordinate system introduced heresgisttie distance today between us and
a distant galaxy B is simply given by its comoving coordingge regardless of the geometry. Usigg
we may ask and answer interesting questions, like how lowguid take for light to travel from such a
galaxy to us. Since light travels on the lightcone we have

dx? =dt?/a(t)?

since the light travels towards us along line of const#gat ¢g), and
X _/to dt
"7 e at)’

wheret, is the time of observation artd is the time of emission. Now consider that the light emitted
has wavelengti\¢ at emission and wavelengily at observation. The periods at emissir= A¢/c and

observationT, = Ay/c satisfy
to dt to+To dt
%o |, 3~ o, 30

Since the period is much (much) smaller than the travel time fearest galaxy, Andromeda, is at about
1 Mpc away whileT is ~ 10~ 5sfor visible light) we get, after reorganizing the terms dé ihtegrals,

tetTe dt totTo gt T T T
/ _:/ L, ® 9% for —«1.
e alt) S, ooat) alte) a(to) t
With a(ty) = a(tp) =1,
Ao 1
- =147z,
Ae  Ate)

wherez is the redshift factor derived in Section 1. We see that lmfgerved with, say, redshift= 1
was actually emitted when the universe was a factddaf z) = 2 smaller.

So far our discussion is purely kinematical and we do not kgewthe actual time dependence
of a(t). We have already discussed two ingredients of the univegaaxies and light. In more general
the matter/content of an isotropic and homogeneous umivisra sum of perfect fluids, characterized
by their energy densitp(t) and pressurg(t). Depending on the context, a fluid may be a gas of non-
relativistic or relativistics particles. The former indies a set of galaxies treated as point particles, dust,
dark matter,etc., while the former could be photons, neoagrior any particle that is non-relavistic at a
given moment.

Given the matter/energy content, the canonical path is tadt fru the RHS,of the Einstein equa-
tions, through the stress-energy tensor, together withteeRson-Walker metric. This gives two inde-
pendent differential equations faft), p(t) and p(t). Adding the equation of state that relatgsndp
gives a closed set of equations that may be solved(fgr p(t), etc.

We take here a different path, that relies as much as possilder intuition of newtonian dynam-
ics. The good news is that the equations we obtain this wagxaetly those that GR would give, at least
for the case of a non-relativistic fluid.

We consider a spherical region of the universe centred owemgioint (let us say us, but really it
does not matter) of radiubat timet and a uniform energy densify. Let us consider a test galaxy on the
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p(t)

test galaxy

The universe

Fig. 11: In a uniform system, the motion of a test galaxy moving awawfthe given point is dictated by the mass
within the spheré/ centred on the given points.

sphere. Since the distribution of matter is isotropic atbtive centre of the sphere and since Newton’s
law of gravitation isdJ 1/r2, only the mas$V within the sphere exerts a net gravitational force on the
test galaxy (see fig.14) If the motion of the galaxy is purely radial (we want to déserour universe in
which galaxies have only radial motion), the equation ofiorofor the galaxy test is

GMm  4nG

e

whereG is Newton’s constant anc?, the speed of light, is there becaysés energy density, not mass
density (later we sat= 1). Usingd = ax and simplifying we obtain th®aychaudhuri equation
a 411G

a 3
All reference to the origin and to the mass of the test galawehdropped and we have an equation for
a. Moreover, it is the same as you would get from General Retgtif the energy density were that of a
non-relativistic fluid. On the way, we have learned that tificct of matter is to slow down the expansion
of the universe, sinca < 0 for p > 0.

If the fluid or gas is made of relativistic particles, we slhibtake into account its pressure. For an
ideal gas, pressure is a measure of mean kinetic energy aadlfad of relativistic particlesp andp
are of the same order. The equation of state of a gas of retatiparticles is

_1
p_3p'

4This argument is fishy because the universe psiori infinite and going to this limit is non-trivial. We should fgeuse
General Relativity here.



For non-relativistic particles or dust, pressure is neéiglggcompared to the energy density (kinetic energy
less than mass at rest) and the equation of state is simply

p~0,

meaningp < p.

How does pressure enter the Raychaudhuri equation? THhisadyca relativistic correction, so
we need General Relativity. The correct equation is

é_

2= 3z P+3p) |

so the effective gravitational mass/energp is 3p (the factor of 3 is there because there are three spatial
dimensions). Ifp > 0, the pressure of a fluid is as attractive as its energy géndvore generally we
see that expansion deceleratedas long as

p+3p>0.

This is the case for a gas of particles, both with relatigisti non-relativistic particles.

More general fluids are, however, considered by cosmokgisigeneral of the fornp = wp. A
particularly intriguing case i& = —1. Forp > 0, this is a fluid with negative pressure. This seems odd
at first but for a medium, negative pressure is like positesion, a mundane property of materials like
an elastic. The only difference is that, for the pressunsite to be relevant, it has to be of same order as
its mass/energy density (a relativistic elastic). Theaaasuch fluids are being considered is that a fluid
with p = —p gives accelerated expansion (see the footnote on presadieigts). This is also called a
cosmological constant (up to a factor) or, more recentlgk daergy.

To solve fora(t), we need another equation. This will be provided by consenvaf energy of
the fluid. The first law of thermodynamics appliedEe= pV with V O a gives
dE=pdV+Vdp =—pdV+TdS

A key feature of an homogeneous and isotropic universe tet@ansion is adiabatid &= 0). This is
a consequence of the Einstein equations but physicallynitesobecause heat has nowhere to go in an
homogeneous and isotropic system. Thus

p=—3H(p+p).

Applying this to the three kinds of fluid envisioned above viotain:
- Dust, non-relativistic matter:

p=0 — pOa?s.
This is natural: expansion just dilutes the energy density.
- Radiation, relativistic matter:

_p 4
p_3 pUda".

For a relativistic fluid, dilution is faster than in a nonatVistic fluid.

5A possible misconception is that (positive) pressure shgivle repulsion. This is true when there is a gradient ofsanes
(like a gas in a balloon) but in an homogeneous universespress uniform and thus no gradient.
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-Cosmological constant, dark energy:

p=-p — p=const.
For a cosmological constant (dark energy), the energy testsiys constant. Hence the name.

The Raychaudhuri and energy conservation equation canrbkiced to get a first order equation
for a, called theFriedmann equation 8 <
2
H = TP T2 (4)
whereH = &/a. Going from a second order to a first order equation, we maisidace an integration
constant. We have identified it witd, the curvature of space (we set 1). To establish this connection
you need GR but we will make it more intuitive very soon.

This equation plays a central role in cosmology as it relttie=e important parameters: the Hubble
constant, the total energy density of the universe, andiiigature, or geometry. Dividing the Friedmann
equation byH?, we get

K

1=Q- 2H2’ (5)

where we have introduced the energy density parameter

a=F,

Pec
wherep, is thecritical densitydefined as
B 3H2
Pc = G
Today
3H2
00 = % — 1.88h% x 10%°g-cm™3

= 11h%10GeV-m3

(6)
= 2.775h?10"M, -Mpc~3

= (3x10%eV)*H?.

From Eq. (5), we see th& > 1 corresponds to a universe with spherical geometry (somesti
called a ‘closed universe’). @ < 0, it is hyperbolical (‘fopen’). IQ =1, itis flat. No wonder that much
observational effort is put into determinirgg

Consider the third number in Eg. (6). It corresponds to havimughly one spiral galaxy like
Andromeda per cubic Mpc, or on average about ten protons yg@c enetre. This suggests that the
energy density of our universe is not far from the criticahsley. However, despite the fact that most
baryons are are invisible to the ‘eye’ in the universe, wekpeetty well how many there are. It turns out
that the energy density in baryons (ordinary matter) is tsuitiglly less than the critical energy density,
as we shall see later in Section 4.

Let us consider yet another form of the Friedmann equatiowe Imultiply the Friedmann equa-
tion by a®/2 we get
& 4nG
S - op(@)ad=—

2 3 2"
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If we interpreta as ‘position’, this equation is analogous to conservatiberergy in one dimension
E == —K/2 for a particle of unit mass moving in a potentiald] —pa®. For a non-relativistic fluid,
p Oa3 and thusU O —1/a. We may use our intuition of simple dynamical system to aselihe
possible solutions, as depicted in Fig. 12. Originallys close to zero and increasing in expanding
solutions. The origin of time correspondsae- 0, a singular solution singe — oo at that moment. This
singularity is called the Big Bang. If energy is negatike;> 0, expansion stops at some maximal scale
factora and then decreases.Hf< 0, expansion lasts for ever. Kf equals exactly zero (flat), expansion
slows down and comes to rest asymptotically. This set-upasigely analogous to the escape velocity
problem in a gravitational system.

For a cosmological constabt [ —a?, a reversed harmonic oscillator, see Fig. 13.

-
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Fig. 12: for a matter-dominated universe, the dynamics of exparisidirectly analogous to the escape velocity
problem. IfK = 0, & goes to zero at infinity. 1K > 0 (more energy densityg vanishes at some point and then
increases. This solution corresponds to a recollapsingeusg, towards a big crunch.

Armed with our equations and their qualitative solutions, may look for explicit solutions. You
may check the solutions given in the table below for the sasiptase of a flat univerk, = 0, when there
is just one fluid. The solutions are normalized so ti&) = 1.
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Fig. 13: If there is a mixture of matter and a cosmological constdi#,dotential shows a maximum (the static
albeit unstable solution, at fixea] was that found by Einstein and the reason why he introducasmological
constant). Interesting solutionsg, analogous to what we observe) have first decelerated exjmanshen the

energy density of matter is dominant, and then accelerageasion, when the cosmological constant takes over.

-Matter 2/3
t 2
t)=(— H==
a0 - (¢ ) 2

-Radiation 12
t 1
alt) = <5> H= >

-N\
alt) =a(tj)expH(t—t)) H = const

The solution for a matter dominated universe is particylarteresting. We may compare to an empty
universep — 0, thus withK < 0. In that limit,

a:t/to,

which might be called inertial expansion, and

1

Ho

to
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In presence of matter, expansion is decelerated and thk iesat the time that has lapsed since the
Big Bang (the age of the universe) is shorter by a factor/&f 2

tg= ——.
07 3H,
UsingH, * =~ 3/2- 10 years, gives
to ~ 10%years

which is shorter than the age of the oldest globular clustdence our universe can not be flat, matter
dominated. This is an instance of an ‘age crisis’, a recussnie in cosmology.

What about other solutions? Some are depicted in Fig. 14.y @hehave the same Hubble
parameter today. They differ by their energy content. Thetmamarkable feature is that the introduction
of a cosmological constant in an otherwise flat geometrysgareolder universe. This is historically an
important motivation for introducing a cosmological cargt to start with Einstein, who introduced the
cosmological constant to get a static univetge; .

a

1 o5 o5 1 15 et

Fig. 14: From bottom to top: flat matter-dominated (blue), empty¢k)a30% matter + 7094 (red), 10% matter
+ 90%A\ (yellow). The red curve is consistent with what we know of teenposition of the universe.

A cosmological constant is not the only way to make the usiz@lder. An open universe would be also
older than a flat universe. An extreme instance with hypetggometry is an empty univerge— 0,
for whichty = 1/Hp and also displayed in Fig. 14. More generic solutions anglaygd in the diagram
of Fig. 15 which shows that an open universe is older than afii@erse with no cosmological constant
(the star).

The solution currently favoured by data is the square, ®ith~ 0.3 andQa ~ 0.7. In the next
section, we review the evidence for the accelerated expamdithe universe.
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Fig. 15: Age of the universe as a function of its composition in matted cosmological constant and of its
geometry.

3 Mapping the cosmological expansion

Determining the composition of the universe is one of thetrimoportant problems in cosmology. One
clear way is to map the cosmological expansion. Take thelfrdéan equation (4) with different contri-
butions to the energy density, say radiation, matter, arabmological constant

8nG
H2 = T(pr +pm+p/\)—K/az.

Using the dependence of these energy densities on the scabed, or equivalently on the redshift
we may rewrite this equation as

where the density parameters are as they would be measudieddad
Q - Qr + Qm+ Q/\ s

is the total energy density.

As we shall see in Section 4, the energy density today in tiadias smallQ, ~ 10°°, while
today Q, ~ Qp are 0(1). As the equation above makes clear, going back in time (Iargadiation
was dominant. Primordial nucleosynthesis (Section 4)cetgis that the expansion of the universe was
initially radiation dominated (RD). As the energy densityadiation decreases more rapidly than that of
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matter, the universe became matter dominated (MD) (aftena talled matter-radiation equality) and
then, it turns out/\ dominated (LD).

The result is that mapping the Hubble paraméteas a function of redshift would give direct
information about the composition of the universe. The mnstrstightforward way to do so would be to
measure the physical distance of distant galatoday Consider again a light ray emitted at tinaeby
some galaxy and observed todgyThe time lapse is related to the physical position of thexgatoday

by
to dt

dP’todayEXZ/t a

=]

Changing variablesa(= 1/(1+ z)) we get a beautiful relation

1 da Z dz

X(ze) = W H2 o HD) (7

To have some hindsight, consider a flat, matter universen Yhe may check that

At small redshiftsz < 1 the relation is linear, as the one observed by Hubble Eg. (1)
HoX N Ze.

All solutions reduce to this relation for small enough reftsh This is only an approximation. As we
shall see, the first correction is related to the deceleraticacceleration of the expansion.

At large redshifts, we get something interesting

_ 2
Jim X(z) = R

This is the largest distance that a signal propagating agpghed of light could have travelled in (such a)
universe. This limiting distance is called tparticle horizon Generically and at any time, the horizon
is at a distance set by the Hubble parameter

dpy ~ 1/H.

The relation (7) is nice, but unfortunately not yet tractabThe reason is that we do not have a
direct access to the quantifgy. Remember that this is the distance to an objedtay. Such a distance
may be established by bouncing light rays between near beigh but, on cosmological distances this
is, well, difficult to do. In practice what we measure is thghticoming from distant galaxies. If we
knew the absolute luminosity’ of the emitting galaxy, therin a static universgits apparent luminosity
7, equal to the energy flux received per steradian, is givembygy conservation

<
T _
J—4 E

We can thus define tHaminous distancéy

1
L \?2
dL_(W) -

This definition may be applied to an expanding universe, igdam/we understand how the energy flux is
affected by expansion.
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Using comoving distance, in a flat, static universe the fluseoled today is

T — Z )
e

What about a curved, expanding universe? In curved spaceustfirst replacey by S(x) (defined in
Section 2).e., the area of a sphere of radiygs smaller (larger) in a spherical (respectively hyperdjoli
universe, see Fig. 16. Furthermore, because of expansoarrgy of a photon is redshifted by a factor
of a=1/(1+ z) between emission and reception. Last, we must take intcuattbe fact that the rate
of photon reception is smaller than the rate of emission lactof ofa=1/(1+ z). Altogether, the flux

S« =R sin %/R

Fig. 16: On a sphere, the circumference of a circle of ragus given by 21S(x)2.

of energy received is

This motivates to define tHaminous distancas

S(x)
a

do = = (1+2%((X)-

Note that, in a flat universe, this is a factor(@f+ z) larger than the physical distance today
d.=dp(1+72).
Objects look fainteri.e., further away, because their light is redshifted by expamsi
Although we shall not use it before Section 7, we introduces lyet another useful definition of

distance. Suppose we know the physical &zaf an object. In Euclidean space, its apparent dianteter
is

D
0= —
da
if the object is at distancds. Thus we define
D
da = 5

and ask howD and ¢ are affected in an expanding universe.
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According to the FRW metric, the angle sustained by an olgéphysical sizeD at comoving
distancey is

D
o=
a&(x)’
which gives
dh=a8 () = 2N

Note that in a flat universe, the angular distancengller than the physical distance by a factor of
1/(1+2),
da = dp/(1+ Z) .

The three notions of distanad, d. andda give the same answer for small redshifts but they
depart from each others at large redshifts. For instaneee ifemember thalp is limited by the particle
horizon, dp — 2/Hop, we see that the angular distance first increases, reachexienom, and then
decreases with distance (see Fig. 17). The effect of cuevadialso both interesting and important. In a

10 |
5 d.

=}
L |
8 1}
=
05
&

0z | da

o1}

0.1 1 10

Fig. 17: Comparison of the three notions of distance discussed itettidor the case of a flat, matter-dominated
universe.

curved universe,

da(2) = ;{ sinh(v/QiHox) Q> 1 ©
A L Dhevion | sin(v—CkHox) Qi< 1

whereQy=1—Q = —K/Hg. An object of fixed size, at fixed comoving distance, appeangel in a
closed universe than in a flat universe. The converse holds open universe. Figure 18 compares the
different distances for three universes.

We have seen that the luminous, physical and angular redudg at smallz. Although we may
plot (or derive analytically in some cases) the Hubble diagfor different models, it is useful and of
interest to express th&(z%) correction to the Hubble law in a model, independent way. ddeis on the
luminous distance and expreagisas a function of the redshittso we first need to eliminate the reference
to x. This is easy if we can solve the Friedmann equatiomfor, as we did in the figure in the preceding
section. Otherwise, if we consider smallve can derive an approximate relation by expandifigynear
t =tg. This approach does not rest on theoretical prejudicestfie validity of Einstein equations) but
requires the introduction of more parameters.
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Fig. 18: Comparison betweedty , dnow = x anddp for the Einstein-de Sitter universe (flat, matter-domidate

an empty universe, and a fla, plus matter universe. See Ned Wright's tutorial, from whitaefigure is taken
[7]). All distances agree for small redshifts. Note thatphesence of a cosmological constant make objects seem
further away (dimmer) than if there is only matter. Also aitgein an hyperbolic universe (like an empty universe)
sustain a smaller angle (larg#) than in a flat universe araifortiori in a spherical universe.

We first needy as a function of timé. From the geodesic motion of a photon, we have

o dt
/te%:x‘ )

Expandinga(t) in the vicinity ofty gives
. 1.
a(t) = a(to) +a(to) (t — to) + éa(to)(t —t)?+...
1
=1+ Ho(t—to) —éqOHg(t—to)z—l—... (10)

whereHp = &/a today andgy = —&p/Ho is called thedeceleration parameternserting the expansion
of a(t) in the LHS of Eq. (9), we get

1
X=(to—t1)+ EHo(to—t1)2+...
In a static universe, it takes a tinig—t; for light to travel a physical distance (remember comoving
distance = physical distance today). This takes less tina@ iexpanding universe since the source was
closer,a(t;)x < x. Finally we need to relat —t; andz. As

ao 1
14z=2= |
a a(tl)
we have q
Z= Ho(to—tl) + <1—|— EO) Hg(to—tl)z—l—...
or

to—t]_:Hgl(Z—(l—I-QQ/Z)ZZ—I—...) .
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Now, if we limit the expansion to second orderanyou can verify that the correction due to spatial
curvature is to next order. That is, we can take

S(X) = x.

Putting everything together, we find that the luminous dist¢eto the source is related to redshift by

1
dHo=2z+ E(l—qO)ZZZ—F... .

Note that there is deviation from the Hubble law even in a ensig with vanishing deceleration (Milne
universe). The deceleration paramedgiis directly related to the matter/energy content. Consider
instance a universe with matter and a cosmological condtsiimg the Raychaudhuri equation

A

_ 4AnG __1. 2
5= 3 (Pt3p)=-3H <

o B _gbn)
a

Pc Pc Pc

we finally get

1
= 5 (Qn—20n).
to

5
aH?

o =

We need one last piece of information before we have a lodkeatlata. Astronomers use magni-
tude to express distances. The relation between magnihditoduminous distance is given by

d
m= M +5log,q <Wch> +K(2),

whereM is the magnitude of an object as seen from a distance of 10@K Torrection factor takes into
account the fact that instruments are sensitive not to tiakltoninosity but to some range of frequencies
and that frequencies are shifting because of expansion.

To probe deviations from the linear approximation to the blaltaw, we need to observe objects
at redshiftz ~ 1. Furthermore we need a way to estimate their distance withesconfidence. Such
objects are called ‘standard candles’. Hubble used cephtié first stellar objects that allowed one
to measure distances beyond our galaxy. The recent breagtihras been realized by the use of a
category of supernovae explosion, called type la supemawaprobe the expansion of the universe.
Their extreme luminosity and an apparent universality & shape of their light curve have promoted
them to the rank of standard candles. This is not without lprob, including the fact that we do not
actually properly understand the physics of Snla explasmmthe fact that the Snla explosions at large
redshifts took place in a younger universe, with possibtdution effects on the explosion of supernovae.
Nevertheless, experts seem to agree that they are goodesandl that they give us a faithful mapping
of the cosmological expansion. A good review of the use oaSmkosmology is [8].

Figures 19 and 20 show the historical data published at dbeame time at the end of the 1990s
by two independent teams, the Supernovae Search Team [GharBupernovae Cosmology Project
[10]. Both sets of data concur with indicating that the exgdam of the universe is accelerating, rather
than decelerating. A recent compilation of observatiorshmvn in Fig. 21, taken from Ned Wright's
cosmology tutorial. Clearly the data are in favour of a flalvarse, made up of 30% matter and 70%
cosmological constant. Incidentally, the data also ghigs= 71 kms~1-Mpc~1. Figure 22 shows that
a non-zero cosmological constant is necessary to fit the dateost remarkable, albeit puzzling, result.
We shall come back to the cosmological constant or its gjbliark energy, in Section 8.
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Fig. 19: Supernovae Hubble diagram from the Su- Fig. 20: Supernovae Hubble diagram from the Su-
pernovae Search Team. pernovae Cosmology Project.
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Fig. 21: Supernovae Hubble diagram confronted to different modetiseouniverse. The best curve (in purple) is
a flat universe wittQ,, = 0.27 andQa = 0.73. From Ned Wright's cosmology tutorial.

4 The early universe

The cosmic microwave background radiation (CMBR) that fiks universe has the spectrum of a black
body at temperatur& = 2.725 K. The corresponding number of modes in an interval ofggnieetween
w andw+ dw is given by the Planck distribution

2 Bk . @ dw
Cexpw/T—1(2m)3 ~ expw/T —1 12

A (w)dw
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Fig. 22: Preferred regions in th@,, — —Qa plane from supernovae data and results from observatiache @MB
and large-scale structure and dynamics of clusters of gaafcom the Particle Data Group [11].

with w = k= |k|, and we sebh = c = kg = 1. The factor of 2 is the number of possible polarisatiorestat
of a photon. Integrating over energy gives the density otqh®

2((3)

3
4 T

V:

with £(3) = S, 1/n® = 1.2020... This is indeed a density, sin¢&] = E = L~! using natural units.
TakingT = Ty today, you may verify that there are aboutl8® photons per cubic metre. More precisely

nyo = 410(Tp/2.725)3 cm3.

As a way of comparison, suppose there is one galaxy like Andda per Mp# on average. This would
correspond tar(10) baryons per cubic metre. Later on we shall have better detations of the
number of baryons, but the conclusion will not change: tlaeeemany more photons than baryons in the
universe.

The energy density in the CMBR is, however, quite small todasnpared to that in baryons.
Using
)

_ [ _ s
py—/o w AN (w)dw = 15T ,
one finds that today
Q,oh? =2.47-107°.

One of the main goals of this section will be to get an estiniat€,y and consequently the density of
baryonsny. The important quantity) = n,/n, < 1 is called thebaryon numbeof the universe. For
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the sake of reference, we adapt: 10~°. A more precise number will be given before the end of this
section.

Given thatp, [ T4 andp, O a~*in the expanding universe, we may conclude right-away that
Toat

and alsan, 0 a3, as expected.

It is perhaps worth emphasizing that the above results donmmy that photons of the CMBR are
in thermal equilibriumtoday, for these photons have been travelling for billions of geamd they have
hardly been interacting with anything. However, it is dirpooof that, once upon a time in the universe,
light was in thermal equilibrium. This confidence rests oa tieat fact that a thermal distribution of
relativistic particles is preserved by expansion. Indéfgahotons do not interact then

a A (w)dw

should be constant as the photons can not be destroyed tedrdadeed, usingo 0 a~* (remember
thatA [ a), we have

w?dw 1 wldw
xn(2)—1  adexp2-2)—1

where we have usefl 0 a—1. Hence photons cool down just as if they were in thermal éyitilm, even
if they do not interact anymore with any thermal bath.

JVdOODe Oa 3,

As we go back to the past, the mean energy of photons was lygefactor ofa—1. Eventually
this was enough energy for photon to ionize hydrogen, peavishyT 2, few eV. At even higher temper-
ature, pairs of electrons and positrons were constantbteteand destroyed (2, me), baryons were not
in hadrons but existed as free quarksy 1 GeV), etc. The more we go back in the past of the universe,
the more patrticle species were relativistics and were imtheequilibrium. Basically, we expect that,
if the universe was ever has hot &tel, all particles of the Model Standard (correspondingtd.00)
degrees of freedom) had an abundance

noT3

characteristic of a gas of relativistic particles.

Let g, be the effective number of relativistic degrees of freedo,ae. such tham < T. Then,
following Kolb and Turner [12], it is convenient to write

™,
Pr= g*%T

with .
Ox = Z O + é Z ) OF -
B=bosons r=fermions
The factor of 78 for fermionic degrees of freedom is there because they Bbayi-Dirac rather Bose-

Einstein statistics

w? dw

Mr(@do =0 oo 1

For instancege- = ge+ = 2 because of spin, whilg,, quark= 2 < 3 = 6 because they come in three
colours. The number density for relativistic fermion spsds

—§@T3.

Ne =
F=5

Again the factor 35 comes from the difference between the Fermi-DirsBose-Einstein statistics.
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The expansion rate takes a very simple form in the radiat@nidated era of the universe. Since
pr Oa™4, at early times radiation is bound to be more important thatten curvature or a cosmological
constant. The Friedmann equation then reduces to

12 T2

H ~ 1.66g, Mo

where we have introduced the Planck mis = /hc/G = 1.2209. 10'° GeV. In the early universe
atY2 and thusH = 1/2t. The age of the universe when the temperature wiasthus

t = 0.30g; Y/*Mp, /T2

For instancel = 1 TeV att ~ 1012GeV ! ~ 1013 sec forg, ~ 1(?.

What aboufl ~ 1 MeV? At that temperature the only relativistic degreeseéflom were photons,
electrons and positrons and the three flavours of neutrifibs.protons and neutrons were also present
but they were non-relativistic and much less abondant thametlativistic species. Hengg =2+ 7/8-
(4+3x 2) =10.75 (supposing that only the L-helicity neutrinos were irrthal equilibrium).

Was the universe radiation or matter dominated at 1 MeV? We have already argued that
cosmological data point t@, = /(1) today, while we know tha@, ~ 5-10~° today. Consequently
the energy density in matter was equal to that of radiatioenezq = Q;/Qm ~ 104, corresponding
to Teq = To/aeg ~ 30,000 K~ 3 eV. We shall have a more precise determination of the testyerand
redshift at the time omatter—radiation equalityvhen we know more about the density of matter and
radiation in the universe. Suffices it to say tiiat, ~ 3 eV is a good estimate and thatTat- 1 MeV,
the universe was definitively radiation dominated. You maw rcheck that ~ 1 s atT ~1 MeV while
teq ~ 10P years.

The temperaturd ~ 1 MeV is of the order of the difference between the neutron @nudon
masses

Q=m,—my=1293MeV.

In thermal equilibrium, the relative abundance of neutrand protons is Boltzmann suppressed

T _ o, (11)
Np

3/2
n=g <m_T> o (mop)/T

This stems from

21T

which is the Boltzmann-Maxwell distribution for a non-riN@stic species of mass and chemical po-
tential u. Taking the ratio of neutron and proton abundances, négiettie chemical potentiglsand the
difference in mass in the prefactor gives (11).

At T > 1 MeV, there are as many neutrons and protoRss np, as expected. As the tempera-
ture falls, however, protons become more prominent. Howtnagrmal equilibrium abundances may be
maintained only if weak processes

N+ Ve pP+€

or
N+e« P+ Ve

6The chemical potentials in (11) drop for the following remsén chemical equilibrium, the chemical potential satisfie
Hn — HUp = He— Hy. Since the universe is neutrad/T = Lp/T < 1, where the latter is because there are many more photons
than protons. The chemical of the neutrinos is not known bovided there is no large asymmetry between neutrinos and
antineutrinoguy /T should be small too. See for instance Kolb and Turner.
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are efficient. The rat€ of these processes is controlled by a cross-section typfaaeak interactions.
In a thermal bath the cross-section is
(oV]) ~ GET?

whereGg ~ 10°° GeV~? is the Fermi constant (you can guess this purely on dimeakigrounds,
replacing energy by temperature) while the density of tgpgeticlesn ~ T3. Thus the rate is typically

M ~GET®.

This interaction rate has to be compared with the expangitsaf the universél ~ gi/sz/Mm. A
process is efficient in maintaining thermal equilibrium iff

F>H.

Otherwise, it is said to be out of equilibrium. Intuitivelgieparture from equilibrium happens when
particles are taken apart by expansion faster than theyntaract.

Concretely, the weak processes in which the neutrons anoartake part become inefficient (we
will say that interactions freeze out) when

2
Fr~H — G§T5~gi/2T_.

The freeze out (FO) temperature is
Tro ~ 1MeV.

The estimate above is crude but it captures the essence piiyisees. A more precise calculation would
give Tro = 0.8 MeV.

The bottom line is that belovlio ~ 0.8 MeV, neutrinos stop interacting. Free neutrons may still
decay (the mean lifetime of a neutron is about 900 secondg)rbtons may not be transformed back
into neutrons.

At Tro
T _ Qo 175,
Np

Neutrons either decay or are bound in nuclei. Arolipg, processes like
p+n—D+y

or
D+D «He+y

are very efficients and thus in equilibrium. These are stiotegaction processes, while processes with
neutrinos are weak interactions, so let us assume as a fess gloat all the neutrons are rapidly bound
in helium nuclei after freeze-out. The mass fractiottéé (how much baryon mass is in helium) would

then be
mHenHe ~ 4nHe o 2n 1

T man+mep ntp ntp 3
where we have used the fact that they are two neutrons penteliclei. For a first estimate, this is not
too bad since the observemhass fraction of primordidiHeis close to 25%. In the same approximation,

the left-over protons will eventually bind with electrores form hydrogen, the most abundant form of

xHe

’Since helium is also produced in stars, it is a complicatettento relate the observed abundance to the primordial one.
We do not have time to cover this subject here but Kolb and ffuonthe fairly recent review [13] are places to start.
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ordinary matter in the universe. This program is calgonordial nucleosynthesido differentiate it
from the nucleosynthesis that will take place in stars (afalosions of stars) much later in the history
of the universe. Although helium is also created in stake (ih the Sun), it can account for only a small
fraction of all the helium seen in the universe. The necgsdiprimordial nucleosynthesis is thus quite
well established. It is actually one of the three pillarshaf Big Bang model, together with the recession
of galaxies and the thermal character of the CMBR.

The explanation for the difference between our estimatecésérvations is interesting. The first
thing is that helium abundance is very small at freeze-odtthat nucleosynthesis takes place much later
on, around = 3 min. Betweert ~ 1 s and ~ 3 min, neutrons have time to decay substantially so that

1

t~3min. !

Nn
Np

1 Nnh
~ = — —

Fo ° Np

~
~

which gives, assuming again that most neutrons go intoinetiuclei,
X4~ 0.25.

This is what is observed (see however the previous footnote)

We still have to understand why the abundance of helium idlsha~ 1, T ~ 1 MeV? The
binding energy ofHe is B4 = 28.3 MeV so on energy grounds we would expect all neutrons to be in
bound states. One way to makde is through deuterium D, an isotope of hydrogen with oneroau
So to make*He we have to make sure that there is D. The binding energy wiedam isB, = m, +
mp—Mmp = 2.22 MeV, also larger thail ~ 1 MeV so we expect D to be abundant too, and thus helium to
form, etc. But this is not the case because there are manyphotens than baryons in the univerge-
Np/Ny ~ 10~°. These many photons may efficiently dissociate nuclei. €Balt is that in equilibrium

X2|Eq. ~ r’eBZ/T
while, for nuclei made of A nucleons
Xa ~ nA—1eBAT |

These so-called Saha equations [12] tell that there is a etitiop between energy (the tendency to make
bound state§] €¢/T) and entropy (the many ways they may be dissociaterf"). At Teo ~ 1 MeV,

Xo =102 X,~102  Xppa 107198

These abundances are very small and the conclusion is thaeitiperature has to drop before nucle-
osynthesis may really begin. Solutions of the Boltzmanragqus for the abundance of light nuclei are
shown in Fig. 23. An important feature is that not all D is tunto “He and there is a relic abundance
of deuterium. This abundance turns out to be very senstivbd baryon numbern, as Fig. 24 reveals.
The effect orfHe is easy to understand. If there are fewer photons (lajyenucleosynthesis would
start earlier (higher temperature, thus more neutronsavoglleft) andX, would be larger.

The comparison of observations to prediction of primordiatieosynthesis gives
n=(6.0+0.15)-10"1°

or
Qph? = 0.020+0.05.

This is a remarkable result. If we believe in primordial rodynthesis (you should!), then we know
how many baryons there are in the universe, even though weadatasee most of them (most baryonic
matters is in the interstellar medium, not in stars)!
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Fig. 23: Typical solutions of the Boltzmann equations describirg eliolution of the abundance of light nuclei
in the early universe. Most neutrons go irftde but there are also relic abundances ofB)( tritium (°H) and
lithium and beryllium. From Kolb and Turner.

The abundance diHe is also sensitive to the number of relativistic degreesegfdom afl ~ 1
MeV. For instance, if there were more light neutrinos, tHemdxpansion of the universe bt~ 1 MeV
would be larger, which would lead to freeze-out at a higherperature, thus more remnant neutrons,
and thus moréHe would be formed. The current limit from primordial nuctgathesis on the number
of light (m< 1 MeV) neutrino families is

18<N,<45 (PDG)

This limit predates (and is consistent with) the limit on thenber of neutrino families from measure-
ment of the width of thez at LEP1. This is a neat example of the interplay between clmgmand
high-energy physics.

Primordial nucleosynthesis implies that baryonic mattgresent only 5% of the critical energy
density. In the previous section we have seen that the batith of all matter should be about 30%.
This means that, on top of baryonic or ordinary matter, tieti@uld be another form of matter in the
universe. This is called dark matter.

5 Dark matter

Most matter in the universe is not visible and indicationat ttnis matter is not made of baryons are
strong. With increasing level of confidence, these are
1. The spiral galaxies rotation curve problem
Plots of the orbital velocity of stars and of the intersteias in spiral galaxies (in particular the
so-called HI regions, a halo of ordinary matter which extehdyond the distribution of stars in
spiral galaxies and is composed of neutral atomic hydrogieible through 21 cm emission) are
in discrepancy with a naive application of Newton’s law aduag to which
<V2> ~ GM(r<)

r
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Fig. 24: Predictions of the Big Bang model for the primordial abuntemn(mass fractions) of light elements
confronted to observations (boxes). Small boxes givestatistical errors, the big boxes include systematic srror

whereM(r.) is the mass within radius from the centre of the galaxy. Far from where most of
visible matter is observed & a few kpc) one expecte 0 r—¥/2. What is observed instead (on
average, see Fig. 25) is roughly a plateau with constant. One possible interpretation is that
there is a halo of matter (composed of non or weakly intangcthon-relativistic objects) with
M(ro)OrorpOr=2.

The possibility that this halo is dominantly composed of saasastrophysical compact halo ob-
jects (MACHOSs), like small stars (brown dwarfs), large gemn(jupiters) or black hole is excluded
for masses 10'M., < m < fewM, by observations made in the 1990s (EROS and MACHO col-
laborations).

The spiral galaxies rotation curve problem is also the maitivation for the MOND proposal
(for Modified Newtonian Dynamics), an empirical modificatiof the laws of dynamics which
is able to explain the shape of velocity curves without reseuo the existence of extra matter.
This proposal is, however, challenged by observations maadke scale of clusters of galaxies, in
particular the so-called 'Bullet cluster’.

To conclude, we add that the distribution of dark matter mdhlaxy (if any) is not well known.

It is expected to be more clustered at the centre of galawrbsre visible matter is also more
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Fig. 25: Orbital velocity curve on average based on a sample of spatalxies (see Ref. [14] for details). The
dotted curve is the expected behaviour based on the distnibaf ordinary matter. The dashed curved is the
contribution of hypothetical distribution of dark matter.

concentrated but there is no consensus yet.

For reference, to explain the rotation curve in our galaxe/need on averag®m~ 0.3GeV-cm3
at the position of the Solar system (about 8 kpc from the eesftthe galaxy).

2. Clusters of galaxies

The dynamics of galaxies in clusters is historically thet fiimt for the existence of invisible
matter. Studying the Coma cluster in 1933, Fritz Zwftkilowed using the virial theorem that the
velocity of individual galaxies was too large to explainsteiystem of galaxies as a relaxed, bound
system, unless more, invisible matter is present. The abufunvisible matter is measured by
the mass-to-light ratié /L (M /L = 1 for the Sun), witiM /L ~ 100 for clusters of galaxies.

A recent and most convincing indication for the presenceagk dhatter in clusters is the so-called
Bullet cluster, a system which consists of two collidingstkrs of galaxies. Matter in the Bullet
cluster has been studied in the visible (which gives theidigion of galaxies), through gravita-

tional lensing (which probes the shape of the Newtonianrgiztig and X-rays (which probes the

presence of inter-galactic hot gas). Figure 26 is a compskibwing all three components. In this
figure there is a clear offset of the centre of mass of the twstets.

The lore is that a cluster of galaxies is composed, with exirg importance in mass, of galaxies,
inter-galactic gasif., the majority of ordinary matter), and dark matter. The niptetation of
the figure is that, as the clusters passed through each oitbrgalaxies and dark matter went
through while the inter-galactic gas, which has electrame#ig interactions, slowed down through
collisions, forming the arrow-shaped shock front.

3. Large-scale structure

The most reliable indication for dark matter is the largalsestructure of the universe. Explaining
this will be the main topic of of Section 7. Suffice it to say &éinat our confidence rests on the
fact that, because inhomogeneities were small initidtlg,ghysics underlying the early formation

8Search for “spherical bastard” on the web.
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Fig. 26: The Bullet cluster is actually two clusters in collision.i¥image is a composite showing the distribution

of mass (in blue from gravitational lensing), that of theeirgalactic gas (the dominant form of ordinary matter in

a cluster, in red from X-ray imaging), and that of galaxiehpse centre of mass coincides with that of the blue
regions.

of the large-scale structure of the universe may be studididear approximation (while galaxies
and clusters of galaxies are very complex, non-linear &iras). Observations (anisotropies of
the CMB and large-scale surveys, as those discussed in shedition) indicate there is about 5
times more dark matter than ordinary or baryonic matter.édwer, this dark matter is likely to be
composed of non-relativistic or mildly non-relativistianticles. This will imply that the neutrinos
of the Standard Model can not be the dominant form of darkematt

The particle answer to the dark matter problem is that darttemas composed of particles. After
all, there is dark matter within the Standard Model itselfidéed massive neutrinos are dark matter
candidates, since they interact so weakly with baryons igihd &nd they are abundant in the universe.
However, neutrinos are too light to be the dominant compbogdark matter.

Tritium decay puts the limiin, < 2 eV while solar and atmospheric oscillations for three fesi
constrain the mass difference (squared) between neuteinergtion, giving respectively

Am3; = (8.0+0.3) x 10 °eV?

and
Amé, =1.9t0 30x 10 3eV2.

These boundm, < 1 eV imply that neutrinos are instances of something calletidark Matter (HDM)

a form of dark matter not consistent with large-scale stmas (see Section 7). This is consistent, how-
ever, with the standard lore according to which, given< 2 eV, neutrinos in the universe are too few
to be the dominant form of dark matter. The argument goesliasvia

According to the discussion of Section 4, neutrinos deamlijih the universe at a temperature
Tro ~ 1 MeV. If we assume that the leptonic asymmetry was small gsgmall as the baryon asymme-
try), at freeze-out, the abundance of each species of nestwas

3 3
nVIZZnyDT .
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After freeze-out, the total number of neutrinos can not gesemymore. Assuming that the total number
of photons also stayed constant (see later), we wouleget 308 cn1 3 neutrinos per species today or
pv ~ 3.3-1030(5; m,, /6 V) g-cm~3. Taking the limit from tritium decay gives an upper bound

Q, $0.18.

This is less (but not much,) than the abundance of dark magigr= 0.25. However, there is a subtlety:
we have assumed that the number of photons is conservedditiafier freeze-out positrons and elec-
trons became non-relativistic and annihilated each ofheing so, their entropy got transfer into photon
entropy (.e. electron-positron annihilations adding more photonh&thermal bath). The net result is
that the abundance of neutrinos is suppressed with resp#tat of photons by a factor of/41~ 1/3
(see Kolb and Turner if you want to know how get to this factoFaking this suppression factor into
account finally gives

Xw my,

Q, oh? = .
v.0 94eV

The limit on the mass of neutrinos that we may get from thisltes called the Cowsik-McLellan bound.
Taking the experimental constraints gives

5.104<Q,0h*<6.4-1072.

Cosmic neutrinos and the CMBR photons are instances ofréien the early universe. The
Standard Model of particle physics being not a completerth@ze may speculate about the existence of
other relics. For instance, supersymmetric extensionseoSM require the existence of about a hundred
new particles. If the early universe was hot enough, thesicies were also in thermal equilibrium.
The supersymmetric partners of SM particles are supposkd tamld under a discrete symmetry, called
R-parity. The lightest supersymmetric particle (LSP) irtipredicted to be stable (there are variations
on this scenario). If it is neutral (thus at most weakly iatding, like the SM neutrinos), it could
be a dark matter candidate. This idea is particularly appgddecause the relic abundance of a non-
relativistic particle with weak interactions (a weaklyaracting massive particle or WIMP) is expected
to beQwimp = 0(1) as we shall now see.

The WIMP scenario is not specific to supersymmetry, so censadgeneric albeit hypothetical
massive, stable, neutral and weakly interacting particechX. We suppose thaX was in thermal
equilibrium in the early universe. At high temperatuiieg My, the abundance was like that of photons,
nx ~ T2 but when it became non-relativistic ~ My, it was Boltzmann suppressed

MyT\%?
Ny = Ox <—2>;T > e M/T .

We assume that there is no asymmetry in the abundance bel(zvmedr)_? (no chemical potential) or, as
in the supersymmetric scenario, théatis a real particle in which casé€ = X (real scalar or Majorana
fermion).

From our discussion of primordial nucleosynthesis, we $awthermal equilibrium is maintained
as long asX interactions are fast with respect to the expansion ratbefniverse. In particular, the
abundance oK is controlled by its annihilation into other particles (lyally Standard Model in most
scenarios, but there are variations here) B

X4+Xe—y+2z
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Fig. 27: Evolution of the abundanee /T2 of a particleX whose interactions freeze out while it is non-relativistic
Increasing time is towards the right. The higher the intéoaaate, the smaller the relic abundance.

If the cross-section (thermally average because we arehiarantl bath and the participating particles
have a distribution rather than a precise energy),ithe annihilation rate is given by

= (o]v)nx

As ny 0 e ™Mx/T drops rapidly, the rate of annihilation may rapidly becormeaber than the expansion
rate and annihilations essentially stop. To determineigebcthe relic abundance of particles we
should write (and solve) a few Boltzmann equations. Muchtiiioin may be gained by using the rule of
thumb that equilibrium is maintained as long as

r2H
whereH is the expansion rate. Thus freeze-out occurs at a tempesich that

T2
(a]v))nx (Teo) ~ g/ ? TEO
which gives a relic abundance of
/2 Ton

1
n ~g/c—FO
X |FO ~ Ok I

or today .
12 X0 +3
pXO = MXnX|tOdayN g* WNP'TO

wherex = mx /T which, for weakly interacting particlesx /Tro = ¢/(10,20). We have also usetk [
a2 [0 T3 after freeze-out. This is a beautiful relation: the abuméas simply inversely proportional to
the annihilation cross-section. This makes sense sinchiginer the annihilation rate, the smaller the
relic abundance. The typical evolution of the abundancesmated in Fig. 27. You may check that
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Massive neutrinos?

28 eV Cowsik-MeClelland bound 1 GeV Lee-Weinberg bound
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G-K unitary
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Olive (TASI lectures on DM)
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Fig. 28: Predictions o)y for a stable neutrino with SM interactions. At small massgs., 1 MeV, the neutrino
interactions freeze out while it is relativistic (like th&M$ieutrinos). The Cowsik-McLelland bound gives ~ 30

eV to getQqym measured by WMAP. At higher masses, the interactions freetevhile the neutrinos is non-
relativistic. Sinceo 0 GEZE? ~ GZT? at low energies, the cross-section increases with temperand thus the
relic abundance decreases. The peak iZthesonance. At higher energiss > mz, the neutrino cross-section
keeps increasing. This is specific to heavy neutrinos withliB®interactions. For very large masses, however,
unitarity requires that 0 1/m? and the cross-section must decrease (this is beyond the &dube then the
neutrino must be strongly interacting but this is anothenydt The upper limit on the mass of a very massive
neutrino is called the Griest-Kamionkowski bound. Finglhe dashed line shows the relic abundance if there was
an excess of neutrinos over antineutrinos (non-zero meutiemical potential). The picture is taken from the
review by K. Olive[15].

agreement with the observed abundafzg, ~ 0.25 requireso ~ 1 pbarn, a cross-section typical of
weak interactions.

This result is essentially independent of the mass of th& datter candidateX. Given the
interactions ofX, we may thus have different possil{emasses that are compatible with the dark matter
abundance observed in the universe. This is illustratedynZ8 for the case whep¢ is a stable neutrino
with the same interactions as the SM neutrinos.

The WIMP scenario explained here is quite generic and apfienany scenarios beyond the SM
with new, stable particles. The most important featurei¢leethe appeal of a weakly interacting particle
"automatically’ having the right abundance) is that thekdaatter particle is typically heavy and belongs
to a category called Cold Dark Matter (CDM). The relevancthid type of dark matter for the formation
of large-scale structures will be shown in Section 7. Firetwould like to finish our survey of matter
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with baryons. We believe that baryons are also relics of iy @iniverse. However, the story is more
involved than for dark matter.

6 Baryogenesis

There is much more matter than antimatter in the universerelis essentially no antimatter on Earth.
There is some antimatter in cosmic rays (at a levePHntiprotonsssprotons) but these are secondaries,
produced in collisions. Also, if there were anti-galaxig®re would also be anti-galaxy/galaxy collisions
with spectacular (!) productions gfrays and this is not observed.

We called the parametey = ny/n, ~ 6- 10710 the baryon number of the universe. It tells us
that there are much more baryons than photons. This meanth¢éhasymmetry between baryons and
antibaryons is very small. Indeed, consider the relatedtifyacalled the baryon asymmetry of the
universe

g Np—nNy

s s
wheresis the entropy density
_ptp
T
We have mentioned that the expansion of an isotropic and enemus universe is adiabatic or, in other
word, isentropic. This means ths# is a conserved quantity. We have also alluded to the condept o
entropy when we discussed the relic density of neutrinosthadransfer of entropy from relativistic
electron-positron pairs to photons. Most of entropy todayiphotons but at any given temperatire
it is shared among all relavistic speciesuch thatm, < T. The result is that the, today is a measure
of s. Also, if the baryon number is conserved, baryons and amiilos may annihilate, buiza® stays
constant. Hence

s 078,

Np — Ny Ny
S Ny ltoday

Hence, wherm > 1 GeV, there were many baryons and antibaryons, with a tittive excess of the
former, ¢(10719),

We believe that the early universe was baryon symmeaetgie; 0. One reason is aesthetic. A better
one is that we believe that baryon number is actually notewesl by fundamental interactions. Baryon
number violating processes in equilibrium in the early erée would then wash-out any pre-existing
asymmetry. Yet another one is inflation. If there was anahtiaryon asymmetry, it has been diluted by
the exponential growth of the size of the universe duringatith.

N
<= constant=

So suppose there were as many baryons as antibaryondyinitibke lighest baryons are protons
and neutrons and they would annihilate with their antipbas atT ~ 1 GeV, with a cross-section char-
acteristic of strong processes~ 1/m2. If at that time there was no baryon excess, the relic aburedan
of baryons (and antibaryons) would be like in our discussibdark matter,

Mo~ N~ —

Calculations givelro ~ 20 MeV (note thakro = mp/Tro ~ 50, larger than for weak interactions) and
a residual abundance
Np/ny ~ 102,
This is called the ‘annihilation catastrophe’. Basicatlynieans that we need an excess of baryons before
freeze out or otherwise there would be essentially no barjeftitoday.

So we must go fronmg = 0 early on tong £ 0 beforeTgo. This is calledbaryogenesisa scenario
first proposed by Sakharov in 1967. Baryogenesis in its @stfbrm necessitates three conditions to be
realized.
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1. that baryon number is not conserved
2. that the C and CP symmetries are violated
3. that there was departure from thermal equilibrium

Note that the last two conditions taken together amount moestorm of CPT violation, the symmetry
that relates particle to antiparticle properties.

Baryon number non-conservation is obviously mandatoryetoegate a baryon asymmetry from
a symmetric initial condition. All know processes consetve quantum number called baryon number,
e.g.
n—p+e+v (12)
hasAB = 0. It also hafdL = 0, conservation of the number of leptons. The lightest bargdhe proton
and processes like
p—m+e

which hasAB = AL = —1 have never been observed. The current limit on this decareh gives
Tp > 1.6-10%years

much longer than the age of the univetse: 13- 10° years.
The baryon number is one of thiy1) global symmetries of the SM Lagrangian

Y — ey

and

goeieog
with Qg = 1/3 for quarks an®@g = O for all the other SM particles. We believe that globdll) symme-
tries are either accidental or remnant of a spontaneouskebrlocal symmetry. Accidental symmetries
are not protected. In the SNB+ L is such an accidental symmetrylt is conserved at the classical
level of the theory, but it is broken explicitly at the quamtlevel. This is called a quantum anomaly.
Thus there may be processes that vioBte L within the SM. This turns out to be a quite subtle matter
which entails the topology of the SM and instantons effe€tse net result is that baryon number vio-
lating processes are very suppressed in vacuum. Howeisegnterstood that baryon number violating
processes may be efficient at high temperatures. This chamgkated to the effective restoration of the
SU(2) ®U (1) symmetry at high temperatur@s2, To ~ 1 TeV.

ThatB+ L is not sacred is manifest in another aspect of physics bef@n8M. In grand unified
theories (GUT), both baryons and leptons are in the samdptetiiand thus may transform into each
other. For instance iBU(5), the simplest GUT, the processes of (12) predicted to ocdthrawate

a? ¢
whereM 2 10'® GeV is the mass of the heavy gauge bosonSlii5). This scheme is not favoured

by observations (unification of couplings gives too largeat rfor baryon number violation) but the
supersymmetric version &U(5) is still alive and well.

r

The baryon number changes un@eandCP, and so a state with zero baryon number is an eigen-
state ofC,CP. If these symmetries are exact

[C(CP),H]=0

9B — L on the other hand is not broken by quantum effect. Incidsnigis a gauge symmetry in many extensions of the
SM, like SQ(10).
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and then
(B)(1) =0

for all timet.

Weak interactions break maximally andP (the left and right chirality states have different in-
teractions). CP violation is a more subtle effect. Within the SM it occursaigh complex Yukawa
couplings of the quarks, an effect which manifests itsethim phase in the CKM matrix (for three gen-
erations of quarks). Experimentally CP violation has bdeseoved in the decay & andB mesons. For
instance _

F(K._ — I*vrr) — I'(KL — |7V7T+)
F(KL— 1Hvm )+ T (KL — 1-vh)

= (3.274£0.12)10°3.

Hence it is likely that all the necessary ingredients folybgenesis exist in nature. For the sake
of argument, it is useful to consider a toy model of physicgobe the SM. Consider a heavy partide
with may decay into SM particles (this could be on the heawggebosons iBU(5) alluded to above).
Imagine there are two decay modes, with distinct baryon rusmB is not conserved) and branching
ratiosr and 1—r.

X — Bz r
X — B 1-r.

ThenC andCP violation permit?®

Y — —B1
Y -

= 7

— —B»
with r #£r. Take a pair off andY. Their decay produces on average a baryon asymmetry
By =rB;+ (1— I’)Bz— B — (1— F)Bz = (l‘ — F)(Bl— Bz).

If C,CP are conserved, = r and there is no asymmetry. ldemBf = B, of course. Why do we need
bothC andCP violation to get an asymmetry? Imagine tkaandP are broken but th&&Pis conserved.
Then, as Fig. 29 suggestss=r. If the conditions above are met, the decay’of Y pairs may produce
an excess of baryons over antibaryons. However, in therqalilgrium, processes that transform back
baryons and antibaryons intbandY are also effective. The net effect is that no baryon asymmestr
produced. That a departure from thermal equilibrium is igtpimay be understood on very general
grounds. In thermal equilibrium the distribution of bargamd antibaryons are given

1 1
- eEo—tp)/T 4 1 and fa(k) = eB—kp)/T 11

10| say permit becausgP violation is an evanescent effect. In the decay of partjél#violation arises at one-loop if there
is a quantum interference between a CP violating phase ari®l iav@riant phase. The decay amplitudes at one-loop of the
particle and its antiparticles

fo(K)

M = SHhree+ eiacp%n&loop

and _ '
M = cHhreet+ e7w{cp$2170n(—:uloop

give
‘%‘2— |%|2 0O SinaCP x Im <<Wtree<ﬂo*n&|oop)

which is, in practice, non-zero if the one-loop amplituds banon-zero imaginary part. This happens when kinemaiios s
the particles within the loop to be on mass-shell.
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RH cp
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B

Fig. 29: Consider the decay of the putative parti¢leThe area of each rectangle represents the number of baryons
and antibaryons produced in the decay ofva pair. If P is broken, the number of left-handed (LH) and right-
handed (RH) baryons is different.@fis violated the number of, salRH baryons and.H antibaryons is different.
However, if the combined symmet@P is conserved the number BH baryons and.H antibaryons is the same.
The net result is no asymmetry. Note tiPgplays a secondary role here.

with Ep = y/k2+ m§ andE; = /k®+ mg— andu, and i, are chemical potentials. CPT symmetry gives
mp = mg while in equilibriumb+ b Y+ yimposes

Hp = —Hp.

If, moreover, processes which do not conserve B-numbemagquilibrium, giving effectivelyp+ b «
...+ y+YV, then
Mo = =0
Thus the final result is that
fo(K) = f5(K)
and no asymmetry may be generated in thermodynamic equitibr

One possible scenario for departure from equilibrium isfdllewing. Suppose that initially the
Y andY are in thermal equilibrium at some temperatiire- My, ny = ny T3. The abundance is
maintained by processes say liKet Y < Xgm+ Xsm With a ratel"s. Suppose that af ~ My, the
annihilation rate drops below the expansion rate of thearsgf o < H. ThenY andY are decoupled
from the thermal bath and their abundamegs = ny /s stays constant instead of decreasing &k&/T.
If at some time after decoupling thé and\z start to decay (this means that we have assumed that
o < Ta) and no scattering processes like- b are in equilibrium ['s < Hyecay, & net baryon asymmetry
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is produced which we may estimate to be of the order of

s s 0

ns By By

whereg. is the number of degrees of freedom that are relativistibatine ofY decay. The right way
to do things nowadays is to write and solve a set of Boltzmayuations but the argument above gives
the flavour of baryogenesis.

The scenario discussed above is nice but nowadays GUT lemgerg is not much in favours.
This is in part because SM anomalous processes that miglg araaryon asymmetry may have been in
thermal equilibrium all the way down to the electroweak ghiansition al ~ 1 TeV. One way around
is to use the fact that anomalous processes actually viotdtgistB but ratheB + L.

Imagine there is initially a leptonic asymmetty £ 0 and thatB — L is conserved. Then SM
anomalous processes in equilibrium in the early universe paatially convert this lepton asymmetry
into a baryon asymmetry

1 1
Bt :_ELi and Lt :ELi.

This is a bit naive but a more refined derivation gives a sintitanclusion i.e., a net baryon asymmetry
is generated). This idea is at the basis of leptogenesigraso by which first a lepton asymmetry is
generated and then the lepton asymmetry is partially ctewvénto a baryon asymmetry. The lepton
asymmetry is typically believed to be generated throughGReviolating decay of a heavy Majorana
neutrino of masg. Being a Majorana it may decay into a SM leptioar SM antileptonl. If CP is
violated, the branching ratig # ri-and a net lepton asymmetry is produced on average in the aécay
the heavy Majorana. Decay aft€r~ Mg requires
2 2 2
Mo~ %MRSH(M@ Ngi/zl\'\:—; — M2 @Mpl.

The bound on the Majorana mass depends on the value of thewnleouplingA. Interestingly, heavy
Majorana neutrinos are invoked to explain the smallnesdwh8utrinos, through the see-saw mecha-
nism (see the lectures by P. Hernandez at this school), with

222

my ~ ——
v MR

with v =246 GeV, which gives

D N myMp

H 42’
Hence small SM neutrino masses go in the direction of havitgpbequilibrium decay of heavy Majo-
rana neutrinos. There are many variations around this ideaypically the required mass scale is

10°GeVS Mg < 10°GeV.

This is a very high scale, an unfortunate but quite genesitufe of baryogenesis scenatibs

We summarize here what we have learned about the compoeitidie universe in the previous
sections. We sét’ ~ 1/2.

11There are many scenarios of baryogenesis. For the possifiilcreating the baryon asymmetry around the electroweak
scale, see [16].
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| Constituent |  Fraction of Q today | Origin \

Photons 1.25.107° COBE measurement of CMBR temperature
Neutrinos | 103<Q,0<1.3-101 Neutrino oscillations, lower bound
Tritium decay, upper bound
Baryons 0.05 Primordial nucleosynthesis
(CMB anistropies)
Dark matter 0.25 (Large-scale structure)
Dark energy 0.70 Snla Hubble diagram
Curvature 0 (CMB anisotropies)

The topics in parenthesis will be covered in the last twoisest

7 Formation of large-scale structures

So far we have considered a universe that is perfecly honemgesnand isotropic. This is, however, a first
approximation and we would like also to address the factttige are inhomogeneities on various scales
in the universe, like galaxies, clusters of galaxies anabdyInhomogeneities may be characterized by
the density contragk = dp/p wherep is the average energy density of the fluid being consideresl. W
saw in the first lecture (see Fig. 6) thatk 1 on large scales, say larger than a few tens of Mpc. On
smaller scales) 2 1 and non-linear effects are expected to be important. Bhilse scale of galaxies
and clusters of galaxies, and their formation is a topic Wihscway beyond the scope of these lectures.
On larger scales, however, a linear analysis should becatyidi. The physics is thus fairly simple but
as we shall see, it already tells us a great deal about thenseiv The most important lessons of this
section will be (1) that the mechanism that underlies then&dion of large-scale structures is simply
gravitational collapse and (2) that in an expanding un&ense need primordial inhomogeneities. In this
way, we shall learn something about important cosmologieehmeters.

We shall continue to describe the content of the universie sihple fluids, like baryons, photons,
or dark matter. The basics equations are those of perfedsfluiet us consider for simplicity a non-
relativistic fluid describes by its densify(X,t) and velocity fieldv. In the presence of gravity, these
equations are

1. Continuity equation or conservation of mass gives

op = B
E+D-(pV)_O.

2. Euler equationwhich is the equivalent of Newton for a fluid is

ov - 1- =
— +V-OV=——0Op— 0.
ot * o) P

wherep is the pressure andt is the Newtonian potential.
3. Poisson equatiorgives the Newtonian gravitational potential

[2d = 41Gp .

We linearize these equations, first assuming that the bachkdris static (fluid at rest= 0), with density
p and look for the equations for small perturbations.

p—p+dp V= p—p+dp Do D+OD
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There is a bit of inconsistency here in assuming a staticdrackd, sincep # 0 — ) = 0 and the
latter is a source fav. This is an old issue, already known to Newton, that a statiform distribution
of matter is unstable with respect to gravitational intécars, as we shall see.

Keeping the leading terms, the continuity equation and iEqile

00p _-
W—FpD-éV_O

and oV 1 1
 — _ZDép-06d = —=V2[op — DD
at p °P ps P ’

where we have usedlp/dp = V2, wherevs is the speed of sound in the fluid. Taking the time derivative
of the continuity equation and the divergence of Euler tmigatedV allows us to write an equation for
the density contragk = dp/p

%A 2 PP _

~z — V202N = 025 = 4niGpA .
This is the familiar wave equation for a fluid disturbancethwihase velocitys, in presence of gravity.
Plane wave solutions with wavenumbehnave two independent solutions

AL e;iwt—HE-X

wherew satisfies the dispersion relation

W= 1/V2k? —4nGp.

The behaviour of these solutions depends on the sign of fhregsion in the square root. Itis convenient
to introduce theleans wavenumber
4nGp

k= .
V8

For k > kj, corresponding to a regime in which gravity may be neglecmupared to pressurey is

real and inhomogeneitiep behave as sound waves with= w/k = vs\ /1 —K3/K2. If k < k;, w is
imaginary and pressure can not prevent an inhomogeneity rowing exponentially, the signature of

an instability,
ADetlolt,

The Jeans wavenumbky has a simple interpretation. It comes from the ratio of twoetiscales. On
dimensional grounds, the time characteristic for grawatgdt is given byrg ~ 1/,/Gp (‘collapse time”’),
while pressure effects act a time scaje~ A /vs. The conditiontg ~ Tp givesAy = 211/k;y ~ vs//Gp.

The phenomenon of Jeans instability described above isatdte of the theory of large-scale
structures in cosmology. It may give the impression thabinbgeneities may grow from infinitesimal
perturbations. However, the expansion of the universel@iozground) changes things in a crucial way.
Taking into account expansion gives (see Kolb and Turner)

=+ 2H— (25
a

9°A 0N [V2Kk?
ot? ot

—4nGp>A:O.

There is an extra term, linear in the Hubble paramklteiT his is the analog of a friction term. Also we
are using comoving coordinates, so tkgomoving wavenumber) is fixed akghysicai= k/a. For large
wavenumbers (small scales), the solutions are oscilldteith an amplitude that is decreasing because
of the friction term). For small wavenumbers (large scaléga < 1/H) we may neglect th&? in the
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equation (neglect pressure). Let us consider for simpleimatter dominated, flat universe. Using the
Friedmann equation, we may write

RN oA
a2 T

We search for solutions of the fortn[Jt?. Inserting the differential equation and usiHg= 2/3t gives

3/2H?A =0.

a(a—1)+4/3a—-2/3=0.

This equation has two solutions. Onetis= —1 orA_ ~ H is decreasing. The other one ras-2/3 or
A, Ot%3 and is growing. This is important so we emphasize

A ~t?3 Oa(t)

We see that the effect of expansion is to give a milder, poaweitdehaviour to the instable solution. This
is intuitively reasonable as the source of the instabiitdiluted by expansiony p 0 1/t? 12,

The moderate growth @ (in the linear regime) in an expanding universe implies thabmo-
geneities had to be substantiag instead of infinitesimal if instabilities were growing expmtially) in
the past to give rise to the large-scale structures seew todiae universe. One likely solution to this ini-
tial conditions problem is inflation. We shall see in the kettion that a phase of accelerated expansion
may give rise to a spectrum of primordial inhomogeneitieschiis consistent with observations.

A powerful way to probe these primordial inhomogeneitige isnalyse anisotropies in the CMBR.
This is because in the early universe hydrogen was ionizddhenelectrons were free. Through Thom-
son scattering
y+€ < y+e

which coupled electrons and photons, and through Coulomittestg
€ +p—€ +p

which coupled electrons and protons (we neglect the cartitib of helium in our discussion here), the
photons and baryons were effectively strongly coupled,raafgphoton-baryon fluid. As long as this
coupling is effective, that is, as long as hydrogen is sullistily ionized, we expect inhomogeneities
in the density of baryons and in the energy density photorzetrelated. Sincgy, O T2 (baryons are
non-relativistic) angp, 0 T4,

5
ny—30 = 3 %P
4 p,
where 5T
o=2".
T

Hence inhomogeneities in matter should be reflected in testyoe inhomogeneities in the CMBR.

For the same reason that we can only see the edge of cloudsayenty observed the photons
that were released around the time when the universe becansparent. This moment is called recom-
bination or sometimes, and more appropriately, last stagteNaively this took place when the average
energy of photons- T 0 a~! was of the order of the binding energy of an electron in hydnig~ 13.6

12There is a neat mechanical analogy. Consider a thin, longatid put it vertically on your finger, trying to keep it sght.
If you do not move your hand, it falls down rapidly (exponahinstability). If you simultaneously let your hand fallwio
(diluting gravity), the stick falls more slowly (power lawstability).
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Last scattering surface

conformal time = [ dt/a(t)

A

Big Bang

Particle

horizon at z ¢

comoving distance 4

0,= angular of particle horizon

at last scattering z, These regions are not causally
LS

connected

Fig. 30: Two views of the universe using conformal timeand comoving distancegs. We are at the centre
of the circle today (LHS) or a the tip of the cone (RHS). We mag photons from as far back as the time of
last scattering. The pictures also show the size of thegbauttiorizon at the time of the last scattering, how far
information may have propagated between the Big Bangzand

eV. However, very much like in our discussion of primordiatieosynthesis in Section 4, there are many
more photons than protons and electrons in the univeyss, ~ 102 and these many photons may eas-
ily ionize hydroged®. This competititon between energy and entropy ensuregebatmbination takes
place at a much lower temperatdfe~ 3000 K~ 0.25 eV, corresponding to a redshifts ~ 10°.

In the sequel, we will make use of conformal time

n= /dt/a.

One motivation is that photons travel a distamcin a time intervaln, since
ds? = dt? —a’dx? =0 — ds’ = a?(dn? —dx?).

Hence the lapse of conformal time since the Big Bang is
1dt
= =—=d
No /0 a PH

weredpy is the distance to the horizon we first met in Section 3. Ugirand x coordinates, the causal
structure of the universe takes then a very simple fornstifted in Fig. 30.

Before last scattering, the photon-baryon fluid is essinti@scribed by a single equation f6ér,
which, neglecting the effect of gravity, is simply

0+Vvk*0=0

13A further complication is that recombination of an electiothe fundamental is accompanied by the emission of a photon
which may in turn ionize another hydrogen atom, with no nfgaf In practice, recombination goes (essentially) thiothe
2s state which may relax to the fundamentaltirough two photons.
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Fig. 31: Evolution in time®(n) until ;s for k < 1/csnys, k = 11/Csn)s andk = 211/ csjs

where dots mean the derivative is taken with respect to théoomal time. This equation reflects the
fact that pressure is important as long as photons and bm@menstrongly coupled and so gravitational
collapse of baryons is not possible. Instead the photoyebdituid undergoes acoustic oscillations, with
corresponding heating and cooling of the fluid. This stodasdtscatteringy) = n._s, when baryons and
photons decouple. While pressure drops and baryons maysliapsing, the photons travel freely, car-
rying information about their temperature at last scattgwhich will be observed today as anisotropies
in the CMBR temperature (see Fig. 30). Assun@@) = 0 (a prediction of inflation), the solution of
the wave equation is

@(Vsan) = @(O) cos(kvsm_s) .

Solutions for differenk as a function of conformal time are shown in Fig. 31. Modehwit < n.s

do not evolve much beforg_s. Sincensis the comoving size of the horizon at last scattering, these
correspond to perturbation on very large scales, larger tiva size of the horizon af; s. Increasing,

the mode may undergo more and more oscillations. Those gihwavenumber satisfying

_nm

VslLs
with ninteger, correspond to maximum/minimumft last scattering. This is seen in Fig. 32 which
shows©? at last scattering as a function lof

It is convenient to decompose temperature fluctuationsarCiIBR in spherical harmonics, the
analog on the sphere of Fourier modes,

o |
OS0.0)=F T OmYim(6.9).

[=1m=-—I

A fluctuation on the scal@ ~ 1/k sustains an angle approximately
6~A/D,

where D is the comoving distance to the time of last scatyeflio good approximatior) ~ ng. Sincel
is conjugate to the angi@, roughlyl ~ Dk. Hence the peaks i®? should correspond to peaks at

in the power spectrum of the sigral



Fig. 32: ©? (normalized to one) af, s as a function ok (normalized tovsn) ). There is a succession of peaks at
kn = N7T/VsLs.

obtained by averaging ovennumbers?.

Assuming that the universe is flat, matter dominated sirstestzatteringa [ t%/2 givesa 0 n2 and
thus
No 1 1

ns +I+zs 30

corresponding to an angle of abouitandl; ~ 200 (usingvs ~ 1/4/3 for the photon-baryon fluid). A
compilation of data is shown in Fig. 33. With some imaginatione may recognize the peaks seen in
Fig. 32. We may right away learn two things from these data.

1. The position of the first peak is related to the size of thézba at last scattering. Assume you
know the latter. By measuring the position of the peaks waadlgt measure the angular size that the
horizon sustains on the sky. If the geometry is sphericalatiigle would be larger than in a flat universe
as Fig. 34 suggests. Correspondingly, the first peak woutdhifid to the left (smaller corresponds to
larger 8 on the sky). The opposite would occur for an hyperbolic gadom®ata are consistent with a
flat universe.

2. On the largest scale, the CMBR anisotropies probe priialoithomogeneities (not affected
by local processes). We know actually since COBE ®at 10> (smalll limit of the figure). Now,
remember that we have seen that matter inhomogeneitiesliggow

1
NMpOa=-—
b 142z
in a flat, matter-dominated universe. On large scales, wetseetures today that have, = ¢ (1) on
scales’(100 Mpg), which at the time of last scattering correspond to scalgisate beyond the horizon.
We would thus exped® = A, ~ 103 atz= 7 g, substantially larger than the amplitude inhomogeneities
observedP.

14t the anisotropies are statistically isotropic, the imh@tion in them's is redundant, or rather say, gives an independent
sample of the power in mode Of course, on large angular scales (srhathe sample is small and uncertainty comparitively
large. This is the basis of the so-called 'cosmic variandeiclv leads to a large error on how accurately the power spectr
may be measurefiC, 0C; /v/2l + 1.

15strictly speaking we should also take into account the feattif there were only baryons, the universe would be opéa. It
possible to show that the growth of inhomogeneities slowsmewhen the expansion becomes curvature dominated, an effec
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Fig. 33: Observation of the power spectrum of fluctuations in the CM&igether with a theoretical prediction
with anQgm = 0.25 andQy, =~ 0.05 flat universe. From ref. [11].
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Fig. 34: In a flat universe, the horizon at last scattering (suppasée known) sustains an andlg on the sky. If
the geometry is spherical, light rays are bent inward anditigte would appear larger. The opposite is the case if
the geometry is hyperbolic.

This turns out to be a strong indication for the existenceotd clark matter. The picture is (see
Fig. 35) as follows. There is dark matter and it is composquhaticles that do not interact with photons,
baryons, and electrons. These particles were non-redatit the time when there was equality between
the energy density in radiation and that in matigy(this is necessary because in a radiation-dominated
inhomogeneities only grow logarithmically). Atq this dark matter, which is non-interacting and thus
feels no pressure, collapses/ag, [ a(t). In the meantime, photons and baryons are strongly coupled
and, untila_s, undergo acoustic oscillations. At last scattering, theydmas become free and they may
fall in the gravitational potential of the dark matter. Erfdstory.

The power spectrum of Fig. 33 is quite different from the ediorm of Fig. 32. Explaining all
this in detail would take us way beyond these lectures (sé& R&], [18] or [19]). There is one feature

which makes the conclusion that fluctuations are too smal imiverse with only baryonic matter even more dramatic. See
Kolb and Turner.
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Fig. 35: Schematic evolution of dark matter, baryons, and phototved®n matter-radiation equality and today.

that | would like to emphasize, however, which is the effddiaryons on the relative height of the peaks.

If we take into account gravity and baryons, the equationddrecomes slightly more compli-
cated:

(14 300/4p,)0 + kAV2O ~ —(1+ 3pp/4py ) KAV2D.

where® is the Newtonian gravitational potential. Let us discust fine impact of introducingp, so
assumep, < py. It so happens thab may be taken to be constant in first approximation. Then the
equation may be rewritten as

Octf +kAV20e s =0,

with O¢tf = @ + ®. The meaning 0Bg¢+ is the following. Imagine that a photon of frequengys in

a gravitational potential weldd < O at last scattering. In climbing from the gravitational kvélloses
energy and its frequency is redshifted by a fadler/v = ®. Sincedv/v = &T/T, the Newtonian
potential will manifests itself as a temperature fluctuatim top of the intrinsic temperature fluctuation
©. Hence the observable quantity is the combinaéap;. The relevant solution to the equation B¢ ¢

is

Oet1(N) = Oet1(0) cogkvsn) .

This is called the Sachs-Wolfe effé&t Note that to a potential well hence a region of higher dgnsit
® < 0, corresponds a lower temperature.

16)f @ is constant after recombination, potential wells on the afgghotons between last scattering and us have no net effect
as the losses are compensated exactly by gains and the aifiearaund. If, howeverp has some time dependence, as is
the case if the universe becomes dominated by a cosmolamginatant, then there is an extra contribution to the tentpers.
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Fig. 36: Impact of baryons o®2;.

Now consider the effect of baryongy/n, # 0. The effect of baryons is to reduce the sound
velocity vs — ¢s = Vs//1+ 3pp/4py, and to shift the origin of oscillations @®ess. As the observed
temperature fluctuation is st ; the solution becomes

Oett(N) = (Oet(0) + 3pn/4pyP) cogkcsn ) — 3pp/ 40y P .

For ® < 0O (attractive well), the net effect of the shift is to loweetbven peaks and to raise the odd ones,
with a difference between peakspy/py, Fig. 36. Intuitively, baryons tend to accumulate in a ptgn
well and to increase compression peaks (odd peaks). Headatdifterence between the first lat- 200
and the second peaklat- 400 in CMBR anisotropies data gives a measuremepp b, and this of the
baryon asymmetry of the universe.

Many other cosmological parameters may be extracted fraysis of CMBR anisotropies, to-
gether with input from large-scale surveys. Of particutdeiest to high-energy physicists are the con-
straints that may be put on neutrino masses. The constfeantsWMAP are limited because neutrinos
are a subdominant component of matter at the time of ladiesitag (see however the latest WMAP data
release). Since neutrinos are very light, they have sutistamomentum at the time of matter-radiation
equality. Their motion prevents them from collapsing uthté time they become non-relativistic. In the
meantime they may propagate a distaAgg called the free streaming scale. If neutrinos were to consti
tute a substantial fraction of dark matter, no structurdctéarm on scales\ S Ags. This is the imprint
of so-called Hot Dark Matter. Observations indicate thakdaatter is rather made of Cold Dark Matter
(i.e., a form of dark matter with little momentum at matter-ragiatequality that may form structures on
all scales) and puts a limit (that is large-scale surveyskhrobe smaller cosmological scales than the
CMBR anisotropies) on neutrino masses (typically a fractibeV depending which data are taken into
account, see [20] and lectures by P.Hernandez at this gchool

To conclude this section, | give a fair (albeit personal) smary of joint WMAP and other data
below.

Qp, = 004
Qdam = 0.26

anisotropies called the integrated Sachs-Wolfe effect.
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H = 70km-s ! .Mpc?

Qo = 0.950
Q =1
Qpn = 0.70
P
P
n = 095

The flat, cold dark matter plus cosmological constan’A\@DM or Concordance Modeis now the
standard model of cosmology (see Fig. 22).

The parameten in the list above is new to us. This is the spectral index, tddfed in the last
section. It tells us that the spectrum of temperature fldichna in the CMBR is nearly scale invariant.
That the spectrum should be such is one of the predictionsflattion. That our universe should be
spatially flat is anothter one. The most puzzling result esghesence of a cosmological constant, or at
least the presence of a fluid that behaves like a cosmologiradtant (dark energy). A cosmological
constant leads to accelerated expansion, one of the keydsaif inflation.

8 Inflation

An early phase of accelerated expansion or inflation doefotlosving:
e |t solves the flatness problem

e It solves the horizon problem
e It generates primordial inhomogeneities
e |t predicts that the spectrum of inhomogeneities is scalariant

All these features are consistent with observations. Wéiased inflation is so far unknown but it is easy
to implement it in a phenomenological way and thus not chghs the Big Bang model [21].

We have not paid much attention to this feature, but it issgpitzzling that our universe is so flat.
After all this is just one possible solution among all thegible geometries. There is also a more critical
problem called thdlatness problemThe problem is the following. Take the Friedmann equatiod a
write it as

1-Q| = K hae.

a?H?2
From the Raychaudhuri equation (and our intuition of gsgvit
a 4nG
- __= 3
2 3 (P+3p),

we know that for both a matter or radiation dominated uneérdecreases. Hence we expgct Q| to
increase with time. For instance take- Q| = ¢'(10-2) today. Then algq ~ 30000 K

11-Q|=0(10°%)
while atT ~ 1 MeV

11-Q|=0(10718).
You may go back further in the past. The conclusion is thaggmmetry of the universe had to be very
very close to flat for the universe to appear flat today.

A simple remedy is to make the size of the universe very largesh larger than our horizon. We
can achieve this dynamically if the universe goes throughase of accelerated expansion, or inflation,
since then

a>0
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and
1-Q|0a?—0

How long should inflation last? Assume that inflation is dnivey a fluid such thap ~ —p for some
time. ThenH ~ constant and

a= aieH(t*ti)

Assume inflation happened at an energy s¢&(£0'°) GeV. Taking

(10'6GeV)?

N ~10*GeV  andwith At~ 10t, ~ 10 3%s
Pl

H ~
wheret,, is the Planck time, we then see that the scale factor would geswn by a huge factor within

a very short time
ar/a; ~ e~ 10M.

Compare this withag/a.s ~ 10°, the change of the scale factor between last scatteringaaiay tand
that took about 1310° years.

Another issue is why our universe is very uniform. Consideiristance the time of last scattering.
We see essentially the same CMBR temperature (to withtihall directions. We have seen that the
horizon atz s sustains an angle of about @n the sky. Physical conditions may be pretty uniform within
the scale of the horizon, but how come that they are the santer@er scales? The largest distance we
may probe is the distance to the horizon today,

At T ~ 10 GeV the universe was much smaller. Our horizon today ocdugieegion of about! ~
1(T28H0*l ~ 1 cm. All our universe within one cubic cm. This was small, lsuactually much larger
than the particle horizon at that time, which was

dy ~H 1~ 10 ¥GeV~ 10 %8cm.

Inflating this small distance by a factor of 20~ €°° would give a simple solution to the horizon or
homogeneity problem. This is illustrated in Fig. 37.
The simplest model of inflation posits the existence of assd#tld ¢ with potential
1
V(p) = Emchz

Suppose that the scalar field is initially shifted away framminimum and that it has a small kinetic
energy. Also assume it is homogeneous. The stress-energyr tef the scalar field

T =0 @d, - guv-Z
where.Z is the Lagrangian density, takes the form of that of a peffaixt
Tlé = dlaqpv_pv_pv_p)

with energy density and pressure:
1., 1 1
P50 +§mch2N Emzqa2

and 1
— .2
2¢

p~ P~ ot

1
2
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Horizon at last scattering

End of inflation + reheating

Start of inflation ———»

Big bang ?

Fig. 37: How inflation solves (RHS) the horizon problem (LHS). Notattthe lapse of physical timé)(since
inflation is about 1310° years while that of inflation itself lasts an instant.

or
P~ —p.

This is all we need for inflation to occur. There are many \ames around this simple scheme (called
chaotic inflation —the name comes from the initial condiiorecessary to initiate inflation—) but the
basic idea stays the same. There is some field, called thomflhat evolves slowly so that its potential
energy is larger than its kinetic energy. Contrary to what oray think, that the field is slowly evolving

does not require much tuning. This is because the equatiorotdn of our scalar field in an expanding

universe is
229 ¢

W +3H E + n12(p =0.
The effect of expansion is in the friction term. If the enedpnsity is dominated by the potential of the
scalar field ey
H? ~ GNPQ? = ——.
v m2

pl

If @ > my, initially, the friction term is dominant over the second idative and the field rolls down
slowly. This stops at roughly ~ my, at which points the kinetic energy of the scalar field is mugler
negligible and inflation stops. Eventually the scalar figddibates around its minimum. The universe
after inflation is very big but also very cold as everything;luding any thermal bath (or baryon number
for that matter), has been diluted by the exponential grafitihe size of the universe. It is expected
that the inflaton is coupled to SM fields (or its siblings) ahdlttits energy stored in oscillations may be
transformed in heat. How thigheatingtakes place is a complex problem and is not fully understood
yet.

This is so far a classical process. However, the acceletpdnsion of the universe during
inflation also has a quantum manifestation. This effect ist atmlogous to the phenomenon of pair
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production in the presence of a strong electric field. Its®allosely related to the Hawking radiation of

black holes. The details are beyond the scope of these éschurt let me give you the flavour. Consider

some massless scalar figfdduring inflation. Its equation of motion, using comoving Fieumodes, is
2%x

Sz +2H

It is convenient to use conformal tintk = adn. Then the equation becomes

ox kK
T+¥X_O'

X +2aHyx+k2x =0.
During inflationH ~ const and lea ~ €17, The conformal time may be then expressed as

1 1
n:—ﬁe‘Ht and aH=-—.

Now we eliminate the friction term by using a field redefinitig = nv(n). The equation becomes

finally ,

This is like the equation of an harmonic oscillator. Iniae may havek?n? >> 1 and the solutions are
simply oscillations, like in vacuum. However, as time gogsk8n? decreases (remafk| — O toward
the future) and the equation becomes that of a reversedabsgilthe landmark of an instability. The
guantization of this system leads to the conclusion thatindunflation, modes are created out of the
vacuum (like electron-positron pairs may be created byangtelectromagnetic field). Whilg() = 0,
the correlator ofy, which is equivalent to the power spectrum, is hon-vanghin

H2
F.

ForH ~ constant, the spectrum of fluctuationsyins scale-invariant.e.

Py(k) = (x*) O

000y 0 [[dkry 0 [ EH?

in the sense that there is the same power per log interval of

A similar result holds for fluctuations of the scalar fieldtthdggers inflation or inflatorp. The
discussion is, however, made complicated by the fact thetuffation in a scalar quantity is, in general, not
invariant under general coordinate transformations. Hewdhe essence of the story is that fluctuations
generated in the inflaton field may be expressed as fluctsaiothe Newtonian potential for modes
larger than the size of the horizon. The fluctuation in theatofi may disappear but fluctuations in
the Newtonian potential survive (they stay constant), dmede in turn leave their imprint on the dark
matter. The spectrum of fluctuations is predicted to be (peacale invariant. This feature, called the
Harrison-Zeldovich spectrum, is supported by both the CM& the large-scale structure surveys.

9 Epilogue

Accelerated expansion is easy to implement, but difficutdmprehend. For instance, just addding a
constani/ to the potential of a scalar field gives a contribution to itess-energy tensor

5T =Vody,

17Different normalization than in the rest of the lectures.

51



which is equivalent to adding a cosmological constant

p=—-p=Vo.

To agree with observation we could decide taits zero (or very small) but the problem is that the cos-
mological constant strikes back at the quantum level. ldd@equantum field theories we are effectively
dealing with harmonic oscillators, labelled by momenturithvzero energy 12w = 1/2v/k? + mé (or
—1/2 w for fermions) per degree of freedom. Then a naive summatienthe modes of a scalar field

1
OVguantuml Z 5V k2 + e

gives a divergent resulfjVy — . In quantum field theory we usually discard these contrimstibe-
cause only energy differences matter when we compute saxtmns or discuss symmetry breaking.
HoweverdV, has weight and it is not clear on which basis we may get rid ibfwe take into account
gravity. If instead we assume that the summation over madas ioff at the Planck energy scale, we get

Ny = dpp ~ M,

This is about 120 orders of magnitude than what is observedctrrent accelerated expansion of the
universe giving
QA~070 — pr~(2-103eV)*.

This so-called cosmological constant problem is one of thgdst issue in fundamental physics (see for
instance Ref. [22] for a revied.

Another puzzling facet of the cosmological constant prabis that theQ, observed is close but
not equal to one. Since the contributiorQaf a true cosmological constant was negligible until relgent
but will be dominant in the near futur@, < 1 means that today is a special moment in the history of the
universe, see Fig. 38. This so-called coincidence problasnnotivated the construction of dynamical
models of cosmological constant or dark energy models.rBugiation of state generically departs from
that of a true cosmological constant, a feature that may het@ned by further studies of the Hubble
diagram and large-scale structure.

It is, however, fair to say that the relation between most @madf dark energy and more funda-

mental principles (like, say, string theory or quantum gyaus rather loose and the situation regarding
the nature of dark energy is likely to stay unsettled for stime.
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Appendices
I. Conversion factors

1.6022.10°19)
1.1605 102K
1.7827-10%"kg

1GeV

1Gev! = 1973310 1%m
= 6.6522.10 ®°s

lcm = 5.068-101°GeVv !
1s = 1519-10%GeVv?
1g = b5.608-1073GeV

1AU = 1.496-10"'m (Astronomical Unit)
lpc = 3.086-10m (parsec)
lyear = 3.156-10's

17 = 4.85.10 °rad

Il. Some cosmological parameters

1
- =22x10°g=1.2209-10°  reduced Planck mass
rrbl \/G_N X g
tw = 54x10%s  Plancktime
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Ho

Hy*

Pco

Pyo
Nyo

Nvo

hZQVo

Qroh?

Y

1.6x1073cm  Planck length
100hkm-st-Mpc™?

9.780 1 Gyr = 299¢h~* Mpc

Mo
(h-1Mpc)3
1.880% x 1072%g- cm 3 = (3x 10 3eV)*h?
10.5h2GeV-m~3

3M2H2 =2.775h 1 x 10! critical density

2.47x107° photon density parameter
4.61-1034(T,0/2.725K)* g-cm 3
410(T,0/2.725K)> cm 3

3/11n,0 = 113(T,0/2.725K)> cm 3
Zi my, 3
Saoy T0/2725K)

417x10°° three massless neutrinos

Nbo/Nyo ~ 6- 10710
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