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Abstract

These lecture notes give an introduction to cosmology for high-energy physi-
cists. The content is otherwise orthodox. I introduce the cosmological princi-
ple, the basic equations, and the data that underly our understanding of the uni-
verse. Then I focus on the early universe, discuss nucleosynthesis, the WIMP
paradigm of dark matter, and the principles of baryogenesis. The last two sec-
tions introduce elementary aspects of large-scale structure formation, and their
relation to inflation. I apologise for not giving much reference to the origi-
nal literature, but I point the reader to other reviews or lecture notes for more
details or insights.

1 The Cosmological Principle

When we watch the sky at night, we see stars, the Milky Way, etc. But if we blur the picture a little,
we would agree that there seems to be no preferred direction.This isotropy together with the alleged
Copernician principle —which states that the Earth holds nospecial place— has led to assume that the
Universe is homogeneous on large scales. This hypothesis, called theCosmological Principle, has been
central to the development of modern cosmology, starting with the static universe of Einstein which, he
assumed, should be uniform both in space and in time (see for instance Ref.[1] and [2] for history).

Isotropy and homogeneity are clearly different concepts. There are systems which are isotropic
but not homogeneous and the other way around. However, isotropy around any two points implies
homogeneity, as Fig. 1 suggests.

Fig. 1: Isotropy around A and B means that physical conditions (say density or temperature) are the same on the
two circles and thus on any circle and so implies homogeneity.

The Cosmological Principle is well supported by observations. In particular:
- The isotropy of cosmological signals (most remarkably thecosmic microwave background radi-
ation (CMBR)).

- The large-scale distribution of matter (large-scale structures).

- The recession of distant galaxies (Hubble’s law).
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The CMBR, discovered in 1965, is a spectrum of electromagnetic radiation that peaks in the microwave
range (λ ≈ 2 mm) and that fills the universe. In the early 1990s, the FIRASinstrument on board ot the
COBE satellite established that this radiation has an almost perfect black body spectrum at temperature
T = 2.725 K (see Fig. 2). This discovery brought to an end work on theSteady-State model, an alternative
to the Big Bang. The CMBR signal is very isotropic. There is a dipole at the levelΩ = ∆T/T ∼ 10−3

Fig. 2: The spectrum of the CMBR (FIRAS). Errors have been enlarged by a factor of 400.

that is interpreted as a Doppler effect caused by motion withrespect to the frame of reference in which
the CMBR signal is isotropic. There are also higher multipoles, but at a much smaller level,Ω ≈ 10−5.
Their significance will be discussed in Section 7.

Further evidence of isotropy is provided by studies of the distribution of galaxies (Fig. 3) or other
extragalactic objects, like gamma-ray bursts (Fig. 4). Surveys in redshift, like the Las Campanas

Fig. 3: The APM survey shows the distribution of density of galaxiesin the sky (about 106 galaxies, the brighter
the colour, the higher the density).

Redshift Survey or the 2dF survey (Fig. 5) show that the average distribution of galaxies is uniform.
There are structures in these maps but the density contrast (defined∆ = δρ/ρ whereρ is the energy
density of matter) is∆ ≪ 1 on scales beyond∼ 100 Mpc1. This is shown in Fig. 6 using a compilation
of (somewhat old) data [3].

The law of recession of galaxies was formulated by Hubble in 1929, using cepheid stars to mea-

1The parsec (1 pc≈ 3.3 light-years) is a unit of distance much used in astronomy and still common in cosmology. Seen
from an object at 1 pc, the Sun-Earth distance (1 AU = 150·106 km) would sustain an angle of 1 sec.
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Fig. 4: The gamma-ray burst angular distribution measured by BATSE
(http://www.batse.msfc.nasa.gov/batse/grb/)

Fig. 5: Map of the 2dF redshift survey
(http://www2.aao.gov.au/2dFGRS/)

Fig. 6: Power spectrum of mass fluctuations∝ 〈∆2〉,
whereh is as in (3).

sure cosmic distances. Measurements of spectra of galaxiesshowed a systematic increase of measured
wavelengthsλo with respect to those observed in the laboratoryλe. Defining the redshift parameterz

z=
λo−λe

λe

gives
zc= H0d (1)

whered is the distance to the observed galaxy,c is the speed of light, andH0 ≈ 500 km·s−1· Mpc−1 is
the Hubble parameter (the value quoted is that measured by Hubble). If the redshift is interpreted as a
Doppler effect due to motion of the galaxy,v/c≈ z for non-relativistic motion, we get the Hubble law,

v = H0d, (2)

which states that galaxies recess with a velocity proportionnal to their distance. This motion is an av-
erage, as the velocity of galaxies at fixed distance are distributed around the mean given by the Hubble
flow. The difference is called the peculiar velocity. For large distances, the ratio of the peculiar velocity
to the Hubble velocity is small but for neighbouring galaxies the dispersion is important. Figure 7 shows
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Fig. 7: The first Hubble diagram:H0 ≈ 500km·
s−1 ·Mpc−1.
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Fig. 8: A modern Hubble diagram:H0 = 64km· s−1 ·
Mpc−1.

the historic data. Figure 8 is a contemporary Hubble diagram. The giant leap in distances between the
two figures has been achieved by using a class of supernovae (called type Ia or SnIa for short) as standard
candle to measure cosmic distances. It is the use of SnIa thathas led to the conclusion that the expan-
sion of the universe is accelerating (see Section 3). To find good candles has always been a problem in
cosmology and SnIa are no exception (see, for instance, Ref.[4] or references in Ref.[5]).

In the sequel we will use

H0 = h100km·s−1 ·Mpc−1 with h≈ 0.7 (3)

For estimates takeh≈ 2/3 andh2 ≈ 1/2.

What is the relation between the Hubble law and the cosmological principle? There are two quite
different interpretations of the Hubble law. The first one isthat we are at the centre a sort of explosion
and that the galaxies move away from us. The alternative interpretation is that there are no privileged
observers. The system is uniform (there are an infinite number of centres) and galaxies are moving
away from each others. The classical illustration is a balloon being inflated (we live on the surface of the
balloon). Equivalently take a system of galaxies and assumethat their their peculiar velocity is negligible
(ideal galaxies). The position of these ideal galaxies defines a system of coordinates called comoving
coordinates, that is a system of coordinates in which they are at rest. Motion is taken into account by
introducing a scale factora(t) which depends only on time (which we will call the age of the universe).
That the Hubble law holds is shown in Fig. 9. It is easy to verify that thev ∝ d is the only possible
motion consistent with the cosmological principle (e.g., v ∝ d2 would not work).

An immediate consequence of the Hubble law is that if we reverse the flow and go back in time
there would be a time at which the galaxies were infinitely close to each other. The time scale for this is
given by the inverse of the Hubble parameterH0

1/H0 = h−1 9.78·109 years.

Forh≈ 2/3, we get 1/H0 ≈ 15·109 years, which is older than the age of the globular cluster (∼ 12·109

years) the oldest system of stars. In the days of Hubble, 1/H0 ≈ 2 ·109 years, which was less than the
age of the Earth (for a history of measurements of the Hubble parameter see, for example, [6]).

If v was constant (that is to say for a galaxy at comoving distancex), H−1 would indeed be the age
of the universe, since

v = const= ȧ(t)x→ a(t) ∝ t → H(t) = ȧ(t)/a(t) = 1/t ,
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Fig. 9: A one-dimensional derivation of the Hubble law from the introduction of a uniform scale factora(t).
Things are depicted from the point of A but the same result holds from the point ofB(′), C(′), etc.

choosing the origin of time so thata(0) = 0. Constant velocity is free motion. Gravity is an attractive
force and thus we should expect that attraction between galaxies will slow their collective motion. Con-
sequently, the age of the universe should be less than the naive estimatet0 = 1/H0. To verify this, we
need the equations that describes our system of galaxies, aswell as everything else that might fill the
universe.

2 Basic equations

We now write down the basic equations describing a perfectlyhomogeneous and isotropic expanding
universe. Small perturbations will be discussed in Sections 7 and 8.

The fist thing we need is a convenient system of coordinates todescribe the spacetime of our
(idealized) universe. Spatial slices or sections in spacetime are taken to be isotropic and homogeneous.
By definition physical conditions (say some energy densityρ) are constant on each slice. As in the
previous section, we take the positions of ideal galaxies (i.e., with no peculiar motion) to define comoving
coordinates. Here we use spherical comoving coordinates(χ ,θ ,ϕ) and our galaxy is put at the origin of
coordinates. As for time, we make use of the fact that the lapse of proper time measured by any ideal
(last time) galaxy between a spatial slice with physical conditions A (sayρA) and B (ρB) is a universal
quantity. Hence we take our proper time as a universal coordinate of timet and call it the ‘age of the
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universe’. The age today is written with the subscriptzero, t(today) = t0 (likewise H0 is the Hubble
parameter today). Finally the collective motion (Hubble flow) is implemented through the scale factor
a(t) that we normalize toa(t0) = a0 = 1 today. Hence the physical distancetodaybetween our galaxy
and a galaxy B is given byχB, Fig. 10. For any time, the physical distancedP is given by

Fig. 10: System of comoving coordinates for ideal galaxies,i.e., galaxies at rest in comoving coordinates. Since
space is homogeneous, a universal time of coordinate (‘age of the universe’) is provided by the proper time of
comoving observers. At eacht, the physical distance between a galaxy (us) at the origin and another one is given
by a(t)χ .

dP(t) = a(t)χ .

Taking the time derivative gives the Hubble law

v = ḋP = ȧ(t)χ =
ȧ
a

a(t)χ ≡ HdP

This relation between velocity and physical distance isexact(compare with (2) obtained from the obser-
vation of redshift and the non-relativistic expression of the Doppler effect) but holds only if we use the
distancedP (Section 3).

According to General Relativity (GR) —the framework that weshould really use to describe the
universe as a whole— energy/matter curves spacetime and, conversely, the shape of spacetime tells
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energy/matter how to move. The basic building block of GR is the metric of spacetime. This metric
takes a very simple form for an isotropic and uniform universe. Using our coordinates(t,χ ,θ ,ϕ), an
infinitesimal spacetime interval reads

ds2 = dt2−a(t)2dl2 ,

wheredl is an infinitesimal comoving distance interval. The latter has to be consistent with the isotropy
and homogeneity of space2. Correspondingly the geometry of a space slice does not haveto be euclidean.
Actually there exists three isotropic and homogeneous geometries and the corresponding spacetime met-
rics are called the Robertson-Walker metrics3. The spatial geometries correspond to the equivalent in
three dimensions of the sphere, the plane, and the hyperbolic plane. These are surfaces of constant
curvature, notedK (for a sphere of radiusR, K = 1/R2) and

dl2 = dχ2 +S2
K(χ)(dθ2 +sin2θdφ2)

with (drawing the analogs of the geometries in two dimensions for the sake of illustration)
- Flat space:K = 0

SK(χ) = χ

α + β + γ = π ;
- Spherical space:K > 0

SK(χ)=
1√
K

sin
√

Kχ

α + β + γ > π ;
- Hyperbolic space:K < 0

SK(χ)=
1√
−K

sinh
√
−Kχ

α + β + γ < π .

2Here we make a conceptual jump: we no longer think of galaxiesin motion but rather we shall interpret the Hubble flow
as being caused by the expansion of the universe itself.

3Standard caveat: we discuss only the geometry of space, not its topology. For instance, space could be flat, but curled,
like a three-dimensional torus. This may be, but we assume here that the radii of such a torus are much larger than the largest
distance yet accessed in our universe —to be called the horizon.
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These geometries are all isotropic and homogeneous. This isclear for the plane and the sphere. In the
latter case curvature is justK = 1/R2 whereR is the radius of the sphere (remember, we liveon the
sphere). The plane corresponds to the limitR→ ∞. The hyperbolic plane is less obvious but it really is
the same as the sphere if we take an imaginary radiusR→ iR (see also the Escher-like drawing. This is
the Lobachevsky represtation of the hyperbolic plane)

A nice feature of the coordinate system introduced here is that the distance today between us and
a distant galaxy B is simply given by its comoving coordinateχB, regardless of the geometry. Usingχ
we may ask and answer interesting questions, like how long itwould take for light to travel from such a
galaxy to us. Since light travels on the lightcone we have

dχ2 = dt2/a(t)2

since the light travels towards us along line of constant(θB,ϕB), and

χB =

∫ to

te

dt
a(t)

,

whereto is the time of observation andte is the time of emission. Now consider that the light emitted
has wavelengthλe at emission and wavelengthλ0 at observation. The periods at emissionTe = λe/c and
observationTo = λo/c satisfy

χB =
∫ to

te

dt
a(t)

=
∫ to+To

te+Te

dt
a(t)

.

Since the period is much (much) smaller than the travel time (the nearest galaxy, Andromeda, is at about
1 Mpc away whileT is ∼ 10−15s for visible light) we get, after reorganizing the terms of the integrals,

∫ te+Te

te

dt
a(t)

=
∫ to+To

to

dt
a(t)

−→ Te

a(te)
=

To

a(to)
for

T
t
≪ 1.

With a(to) = a(t0) = 1,
λo

λe
=

1
a(te)

≡ 1+z,

wherez is the redshift factor derived in Section 1. We see that lightobserved with, say, redshiftz= 1
was actually emitted when the universe was a factor of(1+z) = 2 smaller.

So far our discussion is purely kinematical and we do not knowyet the actual time dependence
of a(t). We have already discussed two ingredients of the universe:galaxies and light. In more general
the matter/content of an isotropic and homogeneous universe is a sum of perfect fluids, characterized
by their energy densityρ(t) and pressurep(t). Depending on the context, a fluid may be a gas of non-
relativistic or relativistics particles. The former includes a set of galaxies treated as point particles, dust,
dark matter,etc., while the former could be photons, neutrinos or any particle that is non-relavistic at a
given moment.

Given the matter/energy content, the canonical path is to put it in the RHS,of the Einstein equa-
tions, through the stress-energy tensor, together with a Robertson-Walker metric. This gives two inde-
pendent differential equations fora(t), ρ(t) and p(t). Adding the equation of state that relatesp andρ
gives a closed set of equations that may be solved fora(t), ρ(t), etc.

We take here a different path, that relies as much as possibleon our intuition of newtonian dynam-
ics. The good news is that the equations we obtain this way areexactly those that GR would give, at least
for the case of a non-relativistic fluid.

We consider a spherical region of the universe centred on a given point (let us say us, but really it
does not matter) of radiusd at timet and a uniform energy densityρ . Let us consider a test galaxy on the
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Fig. 11: In a uniform system, the motion of a test galaxy moving away from the given point is dictated by the mass
within the sphereM centred on the given points.

sphere. Since the distribution of matter is isotropic around the centre of the sphere and since Newton’s
law of gravitation is∝ 1/r2, only the massM within the sphere exerts a net gravitational force on the
test galaxy (see fig.11)4. If the motion of the galaxy is purely radial (we want to describe our universe in
which galaxies have only radial motion), the equation of motion for the galaxy test is

md̈ = −GMm
d2 = −4πG

3c2 mρd ,

whereG is Newton’s constant andc2, the speed of light, is there becauseρ is energy density, not mass
density (later we setc = 1). Usingd = aχ and simplifying we obtain theRaychaudhuri equation

ä
a

= −4πG
3c2 ρ .

All reference to the origin and to the mass of the test galaxy have dropped and we have an equation for
a. Moreover, it is the same as you would get from General Relativity, if the energy density were that of a
non-relativistic fluid. On the way, we have learned that the effect of matter is to slow down the expansion
of the universe, since ¨a < 0 for ρ > 0.

If the fluid or gas is made of relativistic particles, we should take into account its pressure. For an
ideal gas, pressure is a measure of mean kinetic energy and for a fluid of relativistic particles,ρ and p
are of the same order. The equation of state of a gas of relativistic particles is

p =
1
3

ρ .

4This argument is fishy because the universe isa priori infinite and going to this limit is non-trivial. We should really use
General Relativity here.
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For non-relativistic particles or dust, pressure is negligible compared to the energy density (kinetic energy
less than mass at rest) and the equation of state is simply

p≈ 0,

meaningp≪ ρ .

How does pressure enter the Raychaudhuri equation? This is clearly a relativistic correction, so
we need General Relativity. The correct equation is

ä
a

= −4πG
3c2 (ρ +3p) ,

so the effective gravitational mass/energy isρ +3p (the factor of 3 is there because there are three spatial
dimensions). Ifp > 0, the pressure of a fluid is as attractive as its energy density5. More generally we
see that expansion isdeceleratedas long as

ρ +3p > 0.

This is the case for a gas of particles, both with relativistic or non-relativistic particles.

More general fluids are, however, considered by cosmologists, in general of the formp = wρ . A
particularly intriguing case isw = −1. Forρ > 0, this is a fluid with negative pressure. This seems odd
at first but for a medium, negative pressure is like positive tension, a mundane property of materials like
an elastic. The only difference is that, for the pressure/tension to be relevant, it has to be of same order as
its mass/energy density (a relativistic elastic). The reasons such fluids are being considered is that a fluid
with p = −ρ gives accelerated expansion (see the footnote on pressure gradients). This is also called a
cosmological constant (up to a factor) or, more recently, dark energy.

To solve fora(t), we need another equation. This will be provided by conservation of energy of
the fluid. The first law of thermodynamics applied toE = ρV with V ∝ a3 gives

dE≡ ρdV +Vdρ = −pdV+TdS.

A key feature of an homogeneous and isotropic universe is that expansion is adiabatic (dS= 0). This is
a consequence of the Einstein equations but physically it comes because heat has nowhere to go in an
homogeneous and isotropic system. Thus

ρ̇ = −3H(ρ + p) .

Applying this to the three kinds of fluid envisioned above we obtain:
- Dust, non-relativistic matter:

p = 0 −→ ρ ∝ a−3 .

This is natural: expansion just dilutes the energy density.

- Radiation, relativistic matter:

p =
ρ
3

−→ ρ ∝ a−4 .

For a relativistic fluid, dilution is faster than in a non-relativistic fluid.
5A possible misconception is that (positive) pressure should give repulsion. This is true when there is a gradient of pressure

(like a gas in a balloon) but in an homogeneous universe, pressure is uniform and thus no gradient.
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-Cosmological constant, dark energy:

p = −ρ −→ ρ = const.

For a cosmological constant (dark energy), the energy density stays constant. Hence the name.

The Raychaudhuri and energy conservation equation can be combined to get a first order equation
for a, called theFriedmann equation.

H2 =
8πG

3
ρ − K

a2 , (4)

whereH = ȧ/a. Going from a second order to a first order equation, we must introduce an integration
constant. We have identified it withK, the curvature of space (we setc= 1). To establish this connection
you need GR but we will make it more intuitive very soon.

This equation plays a central role in cosmology as it relatesthree important parameters: the Hubble
constant, the total energy density of the universe, and its curvature, or geometry. Dividing the Friedmann
equation byH2, we get

1 = Ω− K
a2H2 , (5)

where we have introduced the energy density parameter

Ω =
ρ
ρc

,

whereρc is thecritical densitydefined as

ρc =
3H2

8πG
.

Today

ρc0 =
3H2

0

8πG
= 1.88h2 ×10−29g·cm−3

= 1.1h2 10GeV·m−3

(6)

= 2.775h2 1011M⊙ ·Mpc−3

= (3×10−3 eV)4h2 .

From Eq. (5), we see thatΩ > 1 corresponds to a universe with spherical geometry (sometimes
called a ‘closed universe’). IfΩ < 0, it is hyperbolical (‘open’). IfΩ = 1, it is flat. No wonder that much
observational effort is put into determiningΩ.

Consider the third number in Eq. (6). It corresponds to having roughly one spiral galaxy like
Andromeda per cubic Mpc, or on average about ten protons per cubic metre. This suggests that the
energy density of our universe is not far from the critical density. However, despite the fact that most
baryons are are invisible to the ‘eye’ in the universe, we know pretty well how many there are. It turns out
that the energy density in baryons (ordinary matter) is substantially less than the critical energy density,
as we shall see later in Section 4.

Let us consider yet another form of the Friedmann equation. If we multiply the Friedmann equa-
tion by a2/2 we get

ȧ2

2
− 4πG

3
ρ(a)a2 = −K

2
.
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If we interpreta as ‘position’, this equation is analogous to conservation of energy in one dimension
E =≡ −K/2 for a particle of unit mass moving in a potentialU ∝ −ρa2. For a non-relativistic fluid,
ρ ∝ a−3 and thusU ∝ −1/a. We may use our intuition of simple dynamical system to analyse the
possible solutions, as depicted in Fig. 12. Originallya is close to zero and increasing in expanding
solutions. The origin of time corresponds toa= 0, a singular solution sinceρ → ∞ at that moment. This
singularity is called the Big Bang. If energy is negative,K > 0, expansion stops at some maximal scale
factora and then decreases. IfK < 0, expansion lasts for ever. IfK equals exactly zero (flat), expansion
slows down and comes to rest asymptotically. This set-up is precisely analogous to the escape velocity
problem in a gravitational system.

For a cosmological constantU ∝ −a2, a reversed harmonic oscillator, see Fig. 13.

Fig. 12: for a matter-dominated universe, the dynamics of expansionis directly analogous to the escape velocity
problem. IfK = 0, ȧ goes to zero at infinity. IfK > 0 (more energy density), ˙a vanishes at some point and then
increases. This solution corresponds to a recollapsing universe, towards a big crunch.

Armed with our equations and their qualitative solutions, we may look for explicit solutions. You
may check the solutions given in the table below for the simplest case of a flat univers,K = 0, when there
is just one fluid. The solutions are normalized so thata(t0) = 1.
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Fig. 13: If there is a mixture of matter and a cosmological constant, the potential shows a maximum (the static
albeit unstable solution, at fixeda, was that found by Einstein and the reason why he introduced acosmological
constant). Interesting solutions (i.e. analogous to what we observe) have first decelerated expansion, when the
energy density of matter is dominant, and then accelerated expansion, when the cosmological constant takes over.

-Matter

a(t) =

(

t
t0

)2/3

H =
2
3t

-Radiation

a(t) =

(

t
t0

)1/2

H =
1
2t

-Λ
a(t) = a(ti)exp(H(t − ti)) H = const

The solution for a matter dominated universe is particularly interesting. We may compare to an empty
universeρ → 0, thus withK < 0. In that limit,

a = t/t0 ,

which might be called inertial expansion, and

t0 =
1

H0
.
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In presence of matter, expansion is decelerated and the result is that the time that has lapsed since the
Big Bang (the age of the universe) is shorter by a factor of 2/3

t0 =
2

3H0
.

UsingH−1
0 ≈ 3/2·1010 years, gives

t0 ≈ 1010years,

which is shorter than the age of the oldest globular clusters. Hence our universe can not be flat, matter
dominated. This is an instance of an ‘age crisis’, a recurentissue in cosmology.

What about other solutions? Some are depicted in Fig. 14. They all have the same Hubble
parameter today. They differ by their energy content. The most remarkable feature is that the introduction
of a cosmological constant in an otherwise flat geometry gives an older universe. This is historically an
important motivation for introducing a cosmological constant, to start with Einstein, who introduced the
cosmological constant to get a static universe,t0 → ∞.

-1 -0.5 0.5 1 1.5
Ho t

1

2

3

4

a

Fig. 14: From bottom to top: flat matter-dominated (blue), empty (black), 30% matter + 70%Λ (red), 10% matter
+ 90%Λ (yellow). The red curve is consistent with what we know of thecomposition of the universe.

A cosmological constant is not the only way to make the universe older. An open universe would be also
older than a flat universe. An extreme instance with hyperbolic geometry is an empty universeρ → 0,
for which t0 = 1/H0 and also displayed in Fig. 14. More generic solutions are displayed in the diagram
of Fig. 15 which shows that an open universe is older than a flatuniverse with no cosmological constant
(the star).

The solution currently favoured by data is the square, withΩm ≈ 0.3 andΩΛ ≈ 0.7. In the next
section, we review the evidence for the accelerated expansion of the universe.
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Fig. 15: Age of the universe as a function of its composition in matterand cosmological constant and of its
geometry.

3 Mapping the cosmological expansion

Determining the composition of the universe is one of the most important problems in cosmology. One
clear way is to map the cosmological expansion. Take the Friedmann equation (4) with different contri-
butions to the energy density, say radiation, matter, and a cosmological constant

H2 =
8πG

3
(ρr + ρm+ ρΛ)−K/a2 .

Using the dependence of these energy densities on the scale factora, or equivalently on the redshiftz,
we may rewrite this equation as

H(z) = H0

√

Ωr(1+z)4 + Ωm(1+z)3 + ΩΛ +(1−Ω)(1+z)2 ,

where the density parameters are as they would be measured today and

Ω = Ωr + Ωm+ ΩΛ ,

is the total energy density.

As we shall see in Section 4, the energy density today in radiation is smallΩr ∼ 10−5, while
today Ωm ∼ ΩΛ areO(1). As the equation above makes clear, going back in time (largez) radiation
was dominant. Primordial nucleosynthesis (Section 4) indicates that the expansion of the universe was
initially radiation dominated (RD). As the energy density in radiation decreases more rapidly than that of
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matter, the universe became matter dominated (MD) (after a time called matter-radiation equality) and
then, it turns out,Λ dominated (LD).

The result is that mapping the Hubble parameterH as a function of redshiftz would give direct
information about the composition of the universe. The moststraightforward way to do so would be to
measure the physical distance of distant galaxiestoday. Consider again a light ray emitted at timete by
some galaxy and observed todayt0. The time lapse is related to the physical position of the galaxy today
by

dP|today≡ χ =
∫ t0

te

dt
a

.

Changing variables (a = 1/(1+z)) we get a beautiful relation

χ(ze) =
∫ 1

ae

da
Ha2 =

∫ ze

0

dz
H(z)

. (7)

To have some hindsight, consider a flat, matter universe. Then you may check that

χ(ze) =
2

H0

(

1− 1√
1+ze

)

.

At small redshiftsz∼< 1 the relation is linear, as the one observed by Hubble Eq. (1),

H0χ ≈ ze.

All solutions reduce to this relation for small enough redshifts. This is only an approximation. As we
shall see, the first correction is related to the deceleration or acceleration of the expansion.

At large redshifts, we get something interesting

lim
ze→∞

χ(ze) =
2

H0
.

This is the largest distance that a signal propagating at thespeed of light could have travelled in (such a)
universe. This limiting distance is called theparticle horizon. Generically and at any time, the horizon
is at a distance set by the Hubble parameter

dPH ∼ 1/H .

The relation (7) is nice, but unfortunately not yet tractable. The reason is that we do not have a
direct access to the quantityχ . Remember that this is the distance to an objecttoday. Such a distance
may be established by bouncing light rays between near neighbours but, on cosmological distances this
is, well, difficult to do. In practice what we measure is the light coming from distant galaxies. If we
knew the absolute luminosityL of the emitting galaxy, then,in a static universe, its apparent luminosity
F , equal to the energy flux received per steradian, is given by energy conservation

F =
L

4πd2
L

.

We can thus define theluminous distanceby

dL =

(

L

4πF

)
1
2

.

This definition may be applied to an expanding universe, provided we understand how the energy flux is
affected by expansion.
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Using comoving distance, in a flat, static universe the flux observed today is

F =
L

4πχ2 .

What about a curved, expanding universe? In curved space we must first replaceχ by Sk(χ) (defined in
Section 2)i.e., the area of a sphere of radiusχ is smaller (larger) in a spherical (respectively hyperbolic)
universe, see Fig. 16. Furthermore, because of expansion the energy of a photon is redshifted by a factor
of a = 1/(1+ z) between emission and reception. Last, we must take into account the fact that the rate
of photon reception is smaller than the rate of emission by a factor ofa = 1/(1+z). Altogether, the flux

Fig. 16: On a sphere, the circumference of a circle of radiusχ is given by 2πSk(χ)2.

of energy received is

F =
L a2

4πS2
k(χ)

.

This motivates to define theluminous distanceas

dL =
Sk(χ)

a
= (1+z)Sk(χ) .

Note that, in a flat universe, this is a factor of(1+z) larger than the physical distance today

dL = dP(1+z) .

Objects look fainter,i.e., further away, because their light is redshifted by expansion.

Although we shall not use it before Section 7, we introduce here yet another useful definition of
distance. Suppose we know the physical sizeD of an object. In Euclidean space, its apparent diameterδ
is

δ =
D
dA

if the object is at distancedA. Thus we define

dA =
D
δ

and ask howD andδ are affected in an expanding universe.
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According to the FRW metric, the angle sustained by an objectof physical sizeD at comoving
distanceχ is

δ =
D

aSk(χ)
,

which gives

dA = aSk(χ) =
Sk(χ)

1+z
.

Note that in a flat universe, the angular distance issmaller than the physical distance by a factor of
1/(1+z),

dA = dP/(1+z) .

The three notions of distancedP, dL and dA give the same answer for small redshifts but they
depart from each others at large redshifts. For instance, ifwe remember thatdP is limited by the particle
horizon, dP → 2/H0, we see that the angular distance first increases, reaches a maximum, and then
decreases with distance (see Fig. 17). The effect of curvature is also both interesting and important. In a

Fig. 17: Comparison of the three notions of distance discussed in thetext for the case of a flat, matter-dominated
universe.

curved universe,

dA(z) =
1

(1+z)H0
√

|Ωk|

{

sinh(
√

ΩkH0χ) Ωk > 1
sin(

√
−ΩkH0χ) Ωk < 1

(8)

whereΩk = 1−Ω = −K/H2
0 . An object of fixed size, at fixed comoving distance, appears larger in a

closed universe than in a flat universe. The converse holds inan open universe. Figure 18 compares the
different distances for three universes.

We have seen that the luminous, physical and angular reduce to (1) at smallz. Although we may
plot (or derive analytically in some cases) the Hubble diagram for different models, it is useful and of
interest to express theO(z2) correction to the Hubble law in a model, independent way. We focus on the
luminous distance and expressdL as a function of the redshiftzso we first need to eliminate the reference
to χ . This is easy if we can solve the Friedmann equation fora(t), as we did in the figure in the preceding
section. Otherwise, if we consider smallz, we can derive an approximate relation by expandinga(t) near
t = t0. This approach does not rest on theoretical prejudices (i.e. the validity of Einstein equations) but
requires the introduction of more parameters.
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Fig. 18: Comparison betweendL, dnow≡ χ anddA for the Einstein-de Sitter universe (flat, matter-dominated),
an empty universe, and a flat,Λ plus matter universe. See Ned Wright’s tutorial, from wherethe figure is taken
[7]). All distances agree for small redshifts. Note that thepresence of a cosmological constant make objects seem
further away (dimmer) than if there is only matter. Also objects in an hyperbolic universe (like an empty universe)
sustain a smaller angle (largerdA) than in a flat universe anda fortiori in a spherical universe.

We first needχ as a function of timet. From the geodesic motion of a photon, we have

∫ t0

te

dt
a(t)

= χ . (9)

Expandinga(t) in the vicinity of t0 gives

a(t) = a(t0)+ ȧ(t0)(t − t0)+
1
2

ä(t0)(t − t0)
2 + . . .

= 1+H0(t − t0)−
1
2

q0H2
0(t − t0)

2 + . . . (10)

whereH0 = ȧ/a today andq0 = −ä0/H0 is called thedeceleration parameter. Inserting the expansion
of a(t) in the LHS of Eq. (9), we get

χ = (t0− t1)+
1
2

H0(t0− t1)
2 + . . .

In a static universe, it takes a timet0− t1 for light to travel a physical distanceχ (remember comoving
distance = physical distance today). This takes less time inan expanding universe since the source was
closer,a(t1)χ < χ . Finally we need to relatet0− t1 andz. As

1+z=
a0

a1
=

1
a(t1)

,

we have
z= H0(t0− t1)+

(

1+
q0

2

)

H2
0(t0− t1)

2 + . . .

or
t0− t1 = H−1

0

(

z− (1+q0/2)z2 + . . .
)

.
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Now, if we limit the expansion to second order inz, you can verify that the correction due to spatial
curvature is to next order. That is, we can take

Sk(χ) ≈ χ .

Putting everything together, we find that the luminous distance to the source is related to redshift by

dLH0 = z+
1
2
(1−q0)

2z2 + . . . .

Note that there is deviation from the Hubble law even in a universe with vanishing deceleration (Milne
universe). The deceleration parameterq0 is directly related to the matter/energy content. Considerfor
instance a universe with matter and a cosmological constant. Using the Raychaudhuri equation

ä
a

= −4πG
3

(ρ +3p) = −1
2

H2
(

ρm

ρc
+

ρΛ

ρc
−3

ρΛ

ρc

)

we finally get

q0 = − ä
aH2

∣

∣

∣

∣

t0

=
1
2

(Ωm−2ΩΛ) .

We need one last piece of information before we have a look at the data. Astronomers use magni-
tude to express distances. The relation between magnitude and to luminous distance is given by

m= M +5 log10

(

dL

10pc

)

+K(z) ,

whereM is the magnitude of an object as seen from a distance of 10 pc. TheK correction factor takes into
account the fact that instruments are sensitive not to the total luminosity but to some range of frequencies
and that frequencies are shifting because of expansion.

To probe deviations from the linear approximation to the Hubble law, we need to observe objects
at redshiftz∼ 1. Furthermore we need a way to estimate their distance with some confidence. Such
objects are called ‘standard candles’. Hubble used cepheids, the first stellar objects that allowed one
to measure distances beyond our galaxy. The recent breakthrough has been realized by the use of a
category of supernovae explosion, called type Ia supernovae, to probe the expansion of the universe.
Their extreme luminosity and an apparent universality in the shape of their light curve have promoted
them to the rank of standard candles. This is not without problems, including the fact that we do not
actually properly understand the physics of SnIa explosions or the fact that the SnIa explosions at large
redshifts took place in a younger universe, with possible evolution effects on the explosion of supernovae.
Nevertheless, experts seem to agree that they are good candles and that they give us a faithful mapping
of the cosmological expansion. A good review of the use of SnIa in cosmology is [8].

Figures 19 and 20 show the historical data published at aboutthe same time at the end of the 1990s
by two independent teams, the Supernovae Search Team [9] andthe Supernovae Cosmology Project
[10]. Both sets of data concur with indicating that the expansion of the universe is accelerating, rather
than decelerating. A recent compilation of observations isshown in Fig. 21, taken from Ned Wright’s
cosmology tutorial. Clearly the data are in favour of a flat universe, made up of 30% matter and 70%
cosmological constant. Incidentally, the data also givesH0 = 71 km·s−1·Mpc−1. Figure 22 shows that
a non-zero cosmological constant is necessary to fit the data, a most remarkable, albeit puzzling, result.
We shall come back to the cosmological constant or its sibling, dark energy, in Section 8.
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Fig. 19: Supernovae Hubble diagram from the Su-
pernovae Search Team.

Fig. 20: Supernovae Hubble diagram from the Su-
pernovae Cosmology Project.

Fig. 21: Supernovae Hubble diagram confronted to different models of the universe. The best curve (in purple) is
a flat universe withΩm = 0.27 andΩΛ = 0.73. From Ned Wright’s cosmology tutorial.

4 The early universe

The cosmic microwave background radiation (CMBR) that fillsthe universe has the spectrum of a black
body at temperatureT0 = 2.725 K. The corresponding number of modes in an interval of energy between
ω andω +dω is given by the Planck distribution

N (ω)dω =
2

expω/T −1
d3k

(2π)3 ≡ ω2

expω/T −1
dω
π2
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Fig. 22: Preferred regions in theΩm−−ΩΛ plane from supernovae data and results from observations ofthe CMB
and large-scale structure and dynamics of clusters of galaxies, from the Particle Data Group [11].

with ω = k≡ |k|, and we set̄h= c= kB = 1. The factor of 2 is the number of possible polarisation states
of a photon. Integrating over energy gives the density of photons

nγ =
2ζ (3)

π2 T3

with ζ (3) = ∑∞
n=1 1/n3 = 1.2020. . . This is indeed a density, since[T] = E = L−1 using natural units.

TakingT = T0 today, you may verify that there are about 4·108 photons per cubic metre. More precisely

nγ0 = 410(T0/2.725)3 cm−3 .

As a way of comparison, suppose there is one galaxy like Andromeda per Mpc3 on average. This would
correspond toO(10) baryons per cubic metre. Later on we shall have better determinations of the
number of baryons, but the conclusion will not change: thereare many more photons than baryons in the
universe.

The energy density in the CMBR is, however, quite small todaycompared to that in baryons.
Using

ργ =
∫ ∞

0
ωN (ω)dω =

π2

15
T4 ,

one finds that today
Ωγ0h2 = 2.47·10−5 .

One of the main goals of this section will be to get an estimatefor Ωb0 and consequently the density of
baryonsnb0. The important quantityη = nb/nγ ≪ 1 is called thebaryon numberof the universe. For
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the sake of reference, we adoptη ≈ 10−9. A more precise number will be given before the end of this
section.

Given thatργ ∝ T4 andργ ∝ a−4 in the expanding universe, we may conclude right-away that

T ∝ a−1

and alsonγ ∝ a−3, as expected.

It is perhaps worth emphasizing that the above results do notimply that photons of the CMBR are
in thermal equilibriumtoday, for these photons have been travelling for billions of years and they have
hardly been interacting with anything. However, it is direct proof that, once upon a time in the universe,
light was in thermal equilibrium. This confidence rests on the neat fact that a thermal distribution of
relativistic particles is preserved by expansion. Indeed,if photons do not interact then

a3
N (ω)dω

should be constant as the photons can not be destroyed or created. Indeed, usingω ∝ a−1 (remember
thatλ ∝ a), we have

N dω ∝
ω2dω

exp(ω
T )−1

→ 1
a3

ω2dω
exp(ω

a · a
T )−1

∝ a−3 ,

where we have usedT ∝ a−1. Hence photons cool down just as if they were in thermal equilibrium, even
if they do not interact anymore with any thermal bath.

As we go back to the past, the mean energy of photons was largerby a factor ofa−1. Eventually
this was enough energy for photon to ionize hydrogen, provided sayT ∼> few eV. At even higher temper-
ature, pairs of electrons and positrons were constantly created and destroyed (T ∼> me), baryons were not
in hadrons but existed as free quarks (T ∼> 1 GeV), etc. The more we go back in the past of the universe,
the more particle species were relativistics and were in thermal equilibrium. Basically, we expect that,
if the universe was ever has hot at 1TeV, all particles of the Model Standard (corresponding toO(100)
degrees of freedom) had an abundance

n ∝ T3

characteristic of a gas of relativistic particles.

Let g⋆ be the effective number of relativistic degrees of freedom at T, i.e. such thatm∼< T. Then,
following Kolb and Turner [12], it is convenient to write

ρr = g⋆
π2

30
T4

with

g⋆ = ∑
Bi=bosons

gBi +
7
8 ∑

Fi=fermions
gFi .

The factor of 7/8 for fermionic degrees of freedom is there because they obeyFermi-Dirac rather Bose-
Einstein statistics

NF(ω)dω = gF
ω2

expω/T −1
dω
π2 .

For instancege− = ge+ = 2 because of spin, whilegup quark= 2× 3 = 6 because they come in three
colours. The number density for relativistic fermion species is

nF =
3
5

ζ (3)

π2 T3 .

Again the factor 3/5 comes from the difference between the Fermi-DiracvsBose-Einstein statistics.
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The expansion rate takes a very simple form in the radiation dominated era of the universe. Since
ρr ∝ a−4, at early times radiation is bound to be more important than matter, curvature or a cosmological
constant. The Friedmann equation then reduces to

H ≈ 1.66g1/2
⋆

T2

MPl

where we have introduced the Planck massMPl =
√

h̄c/G ≡ 1.2209· 1019 GeV. In the early universe
a ∝ t1/2 and thusH = 1/2t. The age of the universe when the temperature wasT is thus

t = 0.30g−1/2
⋆ MPl/T2

For instanceT = 1 TeV att ∼ 1012GeV−1 ∼ 10−13 sec forg⋆ ∼ 102.

What aboutT ∼ 1 MeV? At that temperature the only relativistic degrees of freedom were photons,
electrons and positrons and the three flavours of neutrinos.The protons and neutrons were also present
but they were non-relativistic and much less abondant than the relativistic species. Henceg⋆ = 2+7/8·
(4+3×2) = 10.75 (supposing that only the L-helicity neutrinos were in thermal equilibrium).

Was the universe radiation or matter dominated atT ∼ 1 MeV? We have already argued that
cosmological data point toΩm = O(1) today, while we know thatΩγ ≈ 5 ·10−5 today. Consequently
the energy density in matter was equal to that of radiation whenaEQ = Ωr/Ωm ∼ 10−4, corresponding
to TEQ = T0/aEQ∼ 30,000 K∼ 3 eV. We shall have a more precise determination of the temperature and
redshift at the time ofmatter–radiation equalitywhen we know more about the density of matter and
radiation in the universe. Suffices it to say thatTEQ ∼ 3 eV is a good estimate and that atT ∼ 1 MeV,
the universe was definitively radiation dominated. You may now check thatt ∼ 1 s atT ∼1 MeV while
tEQ ∼ 105 years.

The temperatureT ∼ 1 MeV is of the order of the difference between the neutron andproton
masses

Q = mn−mp = 1.293MeV.

In thermal equilibrium, the relative abundance of neutronsand protons is Boltzmann suppressed

nn

np
= e−Q/T . (11)

This stems from

ni = gi

(

mT
2π

)3/2

e−(m−µ)/T

which is the Boltzmann-Maxwell distribution for a non-relativistic species of massm and chemical po-
tentialµ . Taking the ratio of neutron and proton abundances, neglecting the chemical potentials6 and the
difference in mass in the prefactor gives (11).

At T > 1 MeV, there are as many neutrons and protons,nn ≈ np, as expected. As the tempera-
ture falls, however, protons become more prominent. However thermal equilibrium abundances may be
maintained only if weak processes

n+ νe ↔ p+e

or
n+ ē↔ p+ ν̄e

6The chemical potentials in (11) drop for the following reason. In chemical equilibrium, the chemical potential satisfies
µn−µp ≡ µe−µν . Since the universe is neutralµe/T ≡ µp/T ≪ 1, where the latter is because there are many more photons
than protons. The chemical of the neutrinos is not known but provided there is no large asymmetry between neutrinos and
antineutrinosµν/T should be small too. See for instance Kolb and Turner.
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are efficient. The rateΓ of these processes is controlled by a cross-section typicalof weak interactions.
In a thermal bath the cross-section is

〈σ |v|〉 ∼ G2
FT2

whereGF ≈ 10−5 GeV−2 is the Fermi constant (you can guess this purely on dimensional grounds,
replacing energy by temperature) while the density of target particlesn∼ T3. Thus the rate is typically

Γ ∼ G2
FT5 .

This interaction rate has to be compared with the expansion rate of the universeH ∼ g1/2
∗ T2/MPl. A

process is efficient in maintaining thermal equilibrium iff

Γ ∼> H .

Otherwise, it is said to be out of equilibrium. Intuitively,departure from equilibrium happens when
particles are taken apart by expansion faster than they can interact.

Concretely, the weak processes in which the neutrons and protons take part become inefficient (we
will say that interactions freeze out) when

Γ ∼ H → G2
FT5 ∼ g1/2

⋆
T2

Mpl
.

The freeze out (F0) temperature is
TFO ∼ 1MeV.

The estimate above is crude but it captures the essence of thephysics. A more precise calculation would
give TFO ≈ 0.8 MeV.

The bottom line is that belowTFO ≈ 0.8 MeV, neutrinos stop interacting. Free neutrons may still
decay (the mean lifetime of a neutron is about 900 seconds) but protons may not be transformed back
into neutrons.

At TFO nn

np
= e−Q/TFO ≈ 1/5.

Neutrons either decay or are bound in nuclei. AroundTFO, processes like

p+n↔ D+ γ

or
D+D ↔4He+ γ

are very efficients and thus in equilibrium. These are stronginteraction processes, while processes with
neutrinos are weak interactions, so let us assume as a first guess that all the neutrons are rapidly bound
in helium nuclei after freeze-out. The mass fraction of4He (how much baryon mass is in helium) would
then be

XHe =
mHenHe

mnn+mpp
≈ 4nHe

n+ p
=

2n
n+ p

≈ 1
3

where we have used the fact that they are two neutrons per helium nuclei. For a first estimate, this is not
too bad since the observed7 mass fraction of primordial4He is close to 25%. In the same approximation,
the left-over protons will eventually bind with electrons to form hydrogen, the most abundant form of

7Since helium is also produced in stars, it is a complicated matter to relate the observed abundance to the primordial one.
We do not have time to cover this subject here but Kolb and Turner or the fairly recent review [13] are places to start.

25



ordinary matter in the universe. This program is calledprimordial nucleosynthesis, to differentiate it
from the nucleosynthesis that will take place in stars (and explosions of stars) much later in the history
of the universe. Although helium is also created in stars (like in the Sun), it can account for only a small
fraction of all the helium seen in the universe. The necessity of primordial nucleosynthesis is thus quite
well established. It is actually one of the three pillars of the Big Bang model, together with the recession
of galaxies and the thermal character of the CMBR.

The explanation for the difference between our estimate andobservations is interesting. The first
thing is that helium abundance is very small at freeze-out and that nucleosynthesis takes place much later
on, aroundt ≈ 3 min. Betweent ≈ 1 s andt ≈ 3 min, neutrons have time to decay substantially so that

nn

np

∣

∣

∣

∣

FO

≈ 1
5
−→ nn

np

∣

∣

∣

∣

t≈3min.
≈ 1

7

which gives, assuming again that most neutrons go into helium nuclei,

X4 ≈ 0.25.

This is what is observed (see however the previous footnote).

We still have to understand why the abundance of helium is small at t ≈ 1, T ∼ 1 MeV? The
binding energy of4He isB4 = 28.3 MeV so on energy grounds we would expect all neutrons to be in
bound states. One way to make4He is through deuterium D, an isotope of hydrogen with one neutron.
So to make4He we have to make sure that there is D. The binding energy of deuterium isB2 = mn +
mp−mD = 2.22 MeV, also larger thanT ∼ 1 MeV so we expect D to be abundant too, and thus helium to
form, etc. But this is not the case because there are many morephotons than baryons in the universeη =
nb/nγ ≈ 10−9. These many photons may efficiently dissociate nuclei. The result is that in equilibrium

X2|Eq. ∼ ηeB2/T

while, for nuclei made of A nucleons
XA ∼ ηA−1eBA/T .

These so-called Saha equations [12] tell that there is a competition between energy (the tendency to make
bound states∝ eB/T) and entropy (the many ways they may be dissociated∝ ηA). At TFO ∼ 1 MeV,

X2 ≈ 10−12 X4 ≈ 10−23 X12 ≈ 10−108.

These abundances are very small and the conclusion is that the temperature has to drop before nucle-
osynthesis may really begin. Solutions of the Boltzmann equations for the abundance of light nuclei are
shown in Fig. 23. An important feature is that not all D is burnt into 4He and there is a relic abundance
of deuterium. This abundance turns out to be very sensitive to the baryon numberη , as Fig. 24 reveals.
The effect on4He is easy to understand. If there are fewer photons (largerη), nucleosynthesis would
start earlier (higher temperature, thus more neutrons would be left) andX4 would be larger.

The comparison of observations to prediction of primordialnucleosynthesis gives

η = (6.0±0.15) ·10−10

or
Ωbh2 = 0.020±0.05.

This is a remarkable result. If we believe in primordial nucleosynthesis (you should!), then we know
how many baryons there are in the universe, even though we cannot see most of them (most baryonic
matters is in the interstellar medium, not in stars)!
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Fig. 23: Typical solutions of the Boltzmann equations describing the evolution of the abundance of light nuclei
in the early universe. Most neutrons go into4He but there are also relic abundances of D (2H), tritium (3H) and
lithium and beryllium. From Kolb and Turner.

The abundance of4He is also sensitive to the number of relativistic degrees offreedom atT ∼ 1
MeV. For instance, if there were more light neutrinos, then the expansion of the universe atT ∼ 1 MeV
would be larger, which would lead to freeze-out at a higher temperature, thus more remnant neutrons,
and thus more4He would be formed. The current limit from primordial nucleosynthesis on the number
of light (m∼< 1 MeV) neutrino families is

1.8 < Nν < 4.5 (PDG).

This limit predates (and is consistent with) the limit on thenumber of neutrino families from measure-
ment of the width of theZ at LEP1. This is a neat example of the interplay between cosmology and
high-energy physics.

Primordial nucleosynthesis implies that baryonic matter represent only 5% of the critical energy
density. In the previous section we have seen that the contribution of all matter should be about 30%.
This means that, on top of baryonic or ordinary matter, thereshould be another form of matter in the
universe. This is called dark matter.

5 Dark matter

Most matter in the universe is not visible and indications that this matter is not made of baryons are
strong. With increasing level of confidence, these are

1. The spiral galaxies rotation curve problem
Plots of the orbital velocity of stars and of the interstellar gas in spiral galaxies (in particular the
so-called HI regions, a halo of ordinary matter which extends beyond the distribution of stars in
spiral galaxies and is composed of neutral atomic hydrogen,visible through 21 cm emission) are
in discrepancy with a naive application of Newton’s law according to which

〈v2〉 ∼ GM(r<)

r
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Fig. 24: Predictions of the Big Bang model for the primordial abundances (mass fractions) of light elements
confronted to observations (boxes). Small boxes given 2σ statistical errors, the big boxes include systematic errors
[11].

whereM(r<) is the mass within radiusr from the centre of the galaxy. Far from where most of
visible matter is observed (r > a few kpc) one expectsv ∝ r−1/2. What is observed instead (on
average, see Fig. 25) is roughly a plateau withv ∝ constant. One possible interpretation is that
there is a halo of matter (composed of non or weakly interacting, non-relativistic objects) with
M(r<) ∝ r or ρ ∝ r−2.

The possibility that this halo is dominantly composed of massive astrophysical compact halo ob-
jects (MACHOs), like small stars (brown dwarfs), large planets (jupiters) or black hole is excluded
for masses 10−7M⊙ < m< fewM⊙ by observations made in the 1990s (EROS and MACHO col-
laborations).

The spiral galaxies rotation curve problem is also the main motivation for the MOND proposal
(for Modified Newtonian Dynamics), an empirical modification of the laws of dynamics which
is able to explain the shape of velocity curves without recourse to the existence of extra matter.
This proposal is, however, challenged by observations madeon the scale of clusters of galaxies, in
particular the so-called ’Bullet cluster’.

To conclude, we add that the distribution of dark matter in the galaxy (if any) is not well known.
It is expected to be more clustered at the centre of galaxies,where visible matter is also more
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Fig. 25: Orbital velocity curve on average based on a sample of spiralgalaxies (see Ref. [14] for details). The
dotted curve is the expected behaviour based on the distribution of ordinary matter. The dashed curved is the
contribution of hypothetical distribution of dark matter.

concentrated but there is no consensus yet.

For reference, to explain the rotation curve in our galaxy, we need on averageρdm≈ 0.3GeV·cm−3

at the position of the Solar system (about 8 kpc from the centre of the galaxy).

2. Clusters of galaxies
The dynamics of galaxies in clusters is historically the first hint for the existence of invisible
matter. Studying the Coma cluster in 1933, Fritz Zwicky8 showed using the virial theorem that the
velocity of individual galaxies was too large to explain this system of galaxies as a relaxed, bound
system, unless more, invisible matter is present. The amount of invisible matter is measured by
the mass-to-light ratioM/L (M/L = 1 for the Sun), withM/L ∼ 100 for clusters of galaxies.

A recent and most convincing indication for the presence of dark matter in clusters is the so-called
Bullet cluster, a system which consists of two colliding clusters of galaxies. Matter in the Bullet
cluster has been studied in the visible (which gives the distribution of galaxies), through gravita-
tional lensing (which probes the shape of the Newtonian potential) and X-rays (which probes the
presence of inter-galactic hot gas). Figure 26 is a composite showing all three components. In this
figure there is a clear offset of the centre of mass of the two clusters.

The lore is that a cluster of galaxies is composed, with increasing importance in mass, of galaxies,
inter-galactic gas (i.e., the majority of ordinary matter), and dark matter. The interpretation of
the figure is that, as the clusters passed through each other,both galaxies and dark matter went
through while the inter-galactic gas, which has electromagnetic interactions, slowed down through
collisions, forming the arrow-shaped shock front.

3. Large-scale structure
The most reliable indication for dark matter is the large-scale structure of the universe. Explaining
this will be the main topic of of Section 7. Suffice it to say here that our confidence rests on the
fact that, because inhomogeneities were small initially, the physics underlying the early formation

8Search for “spherical bastard” on the web.
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Fig. 26: The Bullet cluster is actually two clusters in collision. This image is a composite showing the distribution
of mass (in blue from gravitational lensing), that of the inter-galactic gas (the dominant form of ordinary matter in
a cluster, in red from X-ray imaging), and that of galaxies, whose centre of mass coincides with that of the blue
regions.

of the large-scale structure of the universe may be studied in linear approximation (while galaxies
and clusters of galaxies are very complex, non-linear structures). Observations (anisotropies of
the CMB and large-scale surveys, as those discussed in the first section) indicate there is about 5
times more dark matter than ordinary or baryonic matter. Moreover, this dark matter is likely to be
composed of non-relativistic or mildly non-relativistic particles. This will imply that the neutrinos
of the Standard Model can not be the dominant form of dark matter.

The particle answer to the dark matter problem is that dark matter is composed of particles. After
all, there is dark matter within the Standard Model itself. Indeed massive neutrinos are dark matter
candidates, since they interact so weakly with baryons and light and they are abundant in the universe.
However, neutrinos are too light to be the dominant component of dark matter.

Tritium decay puts the limitmν < 2 eV while solar and atmospheric oscillations for three families
constrain the mass difference (squared) between neutrino generation, giving respectively

∆m2
21 = (8.0±0.3)×10−5 eV2

and
∆m2

32 = 1.9to 3.0×10−3 eV2 .

These boundsmν ∼< 1 eV imply that neutrinos are instances of something called Hot Dark Matter (HDM)
a form of dark matter not consistent with large-scale structures (see Section 7). This is consistent, how-
ever, with the standard lore according to which, givenmν ∼< 2 eV, neutrinos in the universe are too few
to be the dominant form of dark matter. The argument goes as follows.

According to the discussion of Section 4, neutrinos decoupled in the universe at a temperature
TFO ∼ 1 MeV. If we assume that the leptonic asymmetry was small (say, as small as the baryon asymme-
try), at freeze-out, the abundance of each species of neutrinos was

nνi =
3
4

nγ ∝ T3 .
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After freeze-out, the total number of neutrinos can not change anymore. Assuming that the total number
of photons also stayed constant (see later), we would getnν ≈ 308 cm−3 neutrinos per species today or
ρνi ≈ 3.3·10−30(∑i mνi/6eV)g·cm−3. Taking the limit from tritium decay gives an upper bound

Ων ∼< 0.18.

This is less (but not much,) than the abundance of dark matterΩdm≈ 0.25. However, there is a subtlety:
we have assumed that the number of photons is conserved but short after freeze-out positrons and elec-
trons became non-relativistic and annihilated each other.Doing so, their entropy got transfer into photon
entropy (i.e., electron-positron annihilations adding more photons to the thermal bath). The net result is
that the abundance of neutrinos is suppressed with respect to that of photons by a factor of 4/11≈ 1/3
(see Kolb and Turner if you want to know how get to this factor). Taking this suppression factor into
account finally gives

Ων ,0h2 =
∑νi

mνi

94eV
.

The limit on the mass of neutrinos that we may get from this result is called the Cowsik-McLellan bound.
Taking the experimental constraints gives

5·10−4 ∼< Ων ,0h
2 ∼< 6.4·10−2 .

Cosmic neutrinos and the CMBR photons are instances of relics from the early universe. The
Standard Model of particle physics being not a complete theory, we may speculate about the existence of
other relics. For instance, supersymmetric extensions of the SM require the existence of about a hundred
new particles. If the early universe was hot enough, these particles were also in thermal equilibrium.
The supersymmetric partners of SM particles are supposed tobe odd under a discrete symmetry, called
R-parity. The lightest supersymmetric particle (LSP) is then predicted to be stable (there are variations
on this scenario). If it is neutral (thus at most weakly interacting, like the SM neutrinos), it could
be a dark matter candidate. This idea is particularly appealing because the relic abundance of a non-
relativistic particle with weak interactions (a weakly interacting massive particle or WIMP) is expected
to beΩWIMP = O(1) as we shall now see.

The WIMP scenario is not specific to supersymmetry, so consider a generic albeit hypothetical
massive, stable, neutral and weakly interacting particle noted X. We suppose thatX was in thermal
equilibrium in the early universe. At high temperaturesT ∼> MX, the abundance was like that of photons,
nX ∼ T3 but when it became non-relativisticT ∼ MX, it was Boltzmann suppressed

nX = gX

(

MXT
2π

)3/2

e−MX/T .

We assume that there is no asymmetry in the abundance betweenX andX̄ (no chemical potential) or, as
in the supersymmetric scenario, thatX is a real particle in which casēX ≡ X (real scalar or Majorana
fermion).

From our discussion of primordial nucleosynthesis, we saw that thermal equilibrium is maintained
as long asX interactions are fast with respect to the expansion rate of the universe. In particular, the
abundance ofX is controlled by its annihilation into other particles (typically Standard Model in most
scenarios, but there are variations here)

X + X̄ ↔ y+z
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Fig. 27: Evolution of the abundancenX/T3 of a particleX whose interactions freeze out while it is non-relativistic.
Increasing time is towards the right. The higher the interaction rate, the smaller the relic abundance.

If the cross-section (thermally average because we are in a thermal bath and the participating particles
have a distribution rather than a precise energy) isσ , the annihilation rate is given by

Γ = 〈σ |v|〉nX

As nX ∝ e−MX/T drops rapidly, the rate of annihilation may rapidly become smaller than the expansion
rate and annihilations essentially stop. To determine precisely the relic abundance ofX particles we
should write (and solve) a few Boltzmann equations. Much intuition may be gained by using the rule of
thumb that equilibrium is maintained as long as

Γ ∼> H

whereH is the expansion rate. Thus freeze-out occurs at a temperature such that

〈σ |v|〉nX(TFO) ∼ g1/2
⋆

T2
FO

Mpl

which gives a relic abundance of

nX|FO ∼ g1/2
⋆

T2
FO

〈σ |v|〉Mpl

or today

ρX0 = MXnX|today∼ g1/2
⋆

xFO

〈σ |v|〉Mpl
T3

0

wherex = mX/T which, for weakly interacting particlesmX/TFO = O(10,20). We have also usednX ∝
a−3 ∝ T3 after freeze-out. This is a beautiful relation: the abundance is simply inversely proportional to
the annihilation cross-section. This makes sense since thehigher the annihilation rate, the smaller the
relic abundance. The typical evolution of the abundance is depicted in Fig. 27. You may check that
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Massive neutrinos?

Fig. 28: Predictions ofΩdm for a stable neutrino with SM interactions. At small massesmν ∼< 1 MeV, the neutrino
interactions freeze out while it is relativistic (like the SM neutrinos). The Cowsik-McLelland bound givesmν ∼ 30
eV to getΩdm measured by WMAP. At higher masses, the interactions freezeout while the neutrinos is non-
relativistic. Sinceσ ∝ G2

FE2 ∼ G2
FT2 at low energies, the cross-section increases with temperature and thus the

relic abundance decreases. The peak is theZ resonance. At higher energiesmν > mZ, the neutrino cross-section
keeps increasing. This is specific to heavy neutrinos with SM-like interactions. For very large masses, however,
unitarity requires thatσ ∝ 1/m2

ν and the cross-section must decrease (this is beyond the SM, because then the
neutrino must be strongly interacting but this is another story). The upper limit on the mass of a very massive
neutrino is called the Griest-Kamionkowski bound. Finally, the dashed line shows the relic abundance if there was
an excess of neutrinos over antineutrinos (non-zero neutrino chemical potential). The picture is taken from the
review by K. Olive[15].

agreement with the observed abundanceΩdm ∼ 0.25 requiresσ ∼ 1 pbarn, a cross-section typical of
weak interactions.

This result is essentially independent of the mass of the dark matter candidateX. Given the
interactions ofX, we may thus have different possibleX masses that are compatible with the dark matter
abundance observed in the universe. This is illustrated in Fig. 28 for the case whereX is a stable neutrino
with the same interactions as the SM neutrinos.

The WIMP scenario explained here is quite generic and applies to many scenarios beyond the SM
with new, stable particles. The most important feature (beside the appeal of a weakly interacting particle
’automatically’ having the right abundance) is that the dark matter particle is typically heavy and belongs
to a category called Cold Dark Matter (CDM). The relevance ofthis type of dark matter for the formation
of large-scale structures will be shown in Section 7. First we would like to finish our survey of matter
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with baryons. We believe that baryons are also relics of the early universe. However, the story is more
involved than for dark matter.

6 Baryogenesis

There is much more matter than antimatter in the universe. There is essentially no antimatter on Earth.
There is some antimatter in cosmic rays (at a level 10−5 antiprotonsvsprotons) but these are secondaries,
produced in collisions. Also, if there were anti-galaxies,there would also be anti-galaxy/galaxy collisions
with spectacular (!) productions ofγ-rays and this is not observed.

We called the parameterη = nb/nγ ≈ 6 · 10−10 the baryon number of the universe. It tells us
that there are much more baryons than photons. This means that the asymmetry between baryons and
antibaryons is very small. Indeed, consider the related quantity called the baryon asymmetry of the
universe

nB

s
=

nb−nb̄

s
wheres is the entropy density

s=
ρ + p

T
∝ T3 .

We have mentioned that the expansion of an isotropic and homogeneous universe is adiabatic or, in other
word, isentropic. This means thatsa3 is a conserved quantity. We have also alluded to the concept of
entropy when we discussed the relic density of neutrinos andthe transfer of entropy from relativistic
electron-positron pairs to photons. Most of entropy today is in photons but at any given temperatureT
it is shared among all relavistic speciesi such thatmi ∼< T. The result is that thenγ today is a measure
of s. Also, if the baryon number is conserved, baryons and antibaryons may annihilate, butnBa3 stays
constant. Hence

nB

s
= constant=

nb−nb̄

s
≈ nb

nγ

∣

∣

∣

∣

today
.

Hence, whenT ≫ 1 GeV, there were many baryons and antibaryons, with a littlerelative excess of the
former,O(10−10).

We believe that the early universe was baryon symmetric,nB = 0. One reason is aesthetic. A better
one is that we believe that baryon number is actually not conserved by fundamental interactions. Baryon
number violating processes in equilibrium in the early universe would then wash-out any pre-existing
asymmetry. Yet another one is inflation. If there was an initial baryon asymmetry, it has been diluted by
the exponential growth of the size of the universe during inflation.

So suppose there were as many baryons as antibaryons initially. The lighest baryons are protons
and neutrons and they would annihilate with their antiparticles atT ∼ 1 GeV, with a cross-section char-
acteristic of strong processesσ ∼ 1/m2

π . If at that time there was no baryon excess, the relic abundance
of baryons (and antibaryons) would be like in our discussionof dark matter,

nb ∼ nb̄ ∼
1
σ

Calculations giveTFO ∼ 20 MeV (note thatxFO = mp/TFO ∼ 50, larger than for weak interactions) and
a residual abundance

nb/nγ ∼ 10−20 .

This is called the ‘annihilation catastrophe’. Basically it means that we need an excess of baryons before
freeze out or otherwise there would be essentially no baryons left today.

So we must go fromnB = 0 early on tonB 6= 0 beforeTFO. This is calledbaryogenesis, a scenario
first proposed by Sakharov in 1967. Baryogenesis in its simplest form necessitates three conditions to be
realized.
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1. that baryon number is not conserved

2. that the C and CP symmetries are violated

3. that there was departure from thermal equilibrium

Note that the last two conditions taken together amount to some form of CPT violation, the symmetry
that relates particle to antiparticle properties.

Baryon number non-conservation is obviously mandatory to generate a baryon asymmetry from
a symmetric initial condition. All know processes conservethe quantum number called baryon number,
e.g.

n→ p+e+ ν̄ (12)

has∆B = 0. It also has∆L = 0, conservation of the number of leptons. The lightest baryon is the proton
and processes like

p→ π0 + ē

which has∆B = ∆L = −1 have never been observed. The current limit on this decay channel gives

τp > 1.6·1033years,

much longer than the age of the universet0 ≈ 13·109 years.

The baryon number is one of theU(1) global symmetries of the SM Lagrangian

ψ → eiQBα ψ

and
ψ̄ → e−iQBα ψ̄

with QB = 1/3 for quarks andQB = 0 for all the other SM particles. We believe that globalU(1) symme-
tries are either accidental or remnant of a spontaneously broken local symmetry. Accidental symmetries
are not protected. In the SM,B+ L is such an accidental symmetry9. It is conserved at the classical
level of the theory, but it is broken explicitly at the quantum level. This is called a quantum anomaly.
Thus there may be processes that violateB+L within the SM. This turns out to be a quite subtle matter
which entails the topology of the SM and instantons effects.The net result is that baryon number vio-
lating processes are very suppressed in vacuum. However, itis understood that baryon number violating
processes may be efficient at high temperatures. This changeis related to the effective restoration of the
SU(2)⊗U(1) symmetry at high temperaturesT ∼> Tc ∼ 1 TeV.

ThatB+L is not sacred is manifest in another aspect of physics beyondthe SM. In grand unified
theories (GUT), both baryons and leptons are in the same multiplet and thus may transform into each
other. For instance inSU(5), the simplest GUT, the processes of (12) predicted to occur with a rate

Γ ∼ α2

M4m5
p

whereM ∼> 1016 GeV is the mass of the heavy gauge bosons inSU(5). This scheme is not favoured
by observations (unification of couplings gives too large a rate for baryon number violation) but the
supersymmetric version ofSU(5) is still alive and well.

The baryon number changes underC andCP, and so a state with zero baryon number is an eigen-
state ofC,CP. If these symmetries are exact

[C(CP),H] = 0

9B−L on the other hand is not broken by quantum effect. Incidentally it is a gauge symmetry in many extensions of the
SM, like SO(10).
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and then
〈B〉(t) = 0

for all time t.

Weak interactions break maximallyC andP (the left and right chirality states have different in-
teractions). CP violation is a more subtle effect. Within the SM it occurs through complex Yukawa
couplings of the quarks, an effect which manifests itself inthe phase in the CKM matrix (for three gen-
erations of quarks). Experimentally CP violation has been observed in the decay ofK andB mesons. For
instance

Γ(KL → l+νπ−)−Γ(KL → l−ν̄π+)

Γ(KL → l+νπ−)+ Γ(KL → l−ν̄π+)
= (3.27±0.12)10−3 .

Hence it is likely that all the necessary ingredients for baryogenesis exist in nature. For the sake
of argument, it is useful to consider a toy model of physics beyond the SM. Consider a heavy particleY
with may decay into SM particles (this could be on the heavy gauge bosons inSU(5) alluded to above).
Imagine there are two decay modes, with distinct baryon numbers (B is not conserved) and branching
ratiosr and 1− r.

X → B1 r

X → B2 1− r .

ThenC andCP violation permit10

Ȳ → −B1 r̄

Ȳ → −B2 1− r̄

with r 6= r̄. Take a pair ofY andȲ. Their decay produces on average a baryon asymmetry

BY = rB1 +(1− r)B2− r̄B1− (1− r̄)B2 = (r − r̄)(B1−B2) .

If C,CP are conserved,r = r̄ and there is no asymmetry. Idem ifB1 = B2 of course. Why do we need
bothC andCPviolation to get an asymmetry? Imagine thatC andP are broken but thatCP is conserved.
Then, as Fig. 29 suggests,r = r̄. If the conditions above are met, the decay ofY−Ȳ pairs may produce
an excess of baryons over antibaryons. However, in thermal equilibrium, processes that transform back
baryons and antibaryons intoY andȲ are also effective. The net effect is that no baryon asymmetry is
produced. That a departure from thermal equilibrium is requisite may be understood on very general
grounds. In thermal equilibrium the distribution of baryons and antibaryons are given

fb(k) =
1

e(Eb−µb)/T +1
and fb̄(k) =

1

e(Eb̄−µb̄)/T +1

10I say permit becauseCPviolation is an evanescent effect. In the decay of particles, CP violation arises at one-loop if there
is a quantum interference between a CP violating phase and a CP invariant phase. The decay amplitudes at one-loop of the
particle and its antiparticles

iM = Atree+eiαCPAone−loop

and
iM̄ = Atree+e−iαCPAone−loop

give

|M |2−|M̄ |2 ∝ sinαCP× Im
(

AtreeA
∗

one−loop

)

which is, in practice, non-zero if the one-loop amplitude has a non-zero imaginary part. This happens when kinematics allows
the particles within the loop to be on mass-shell.
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Fig. 29: Consider the decay of the putative particleY. The area of each rectangle represents the number of baryons
and antibaryons produced in the decay of anY, Ȳ pair. If P is broken, the number of left-handed (LH) and right-
handed (RH) baryons is different. IfC is violated the number of, say,RH baryons andLH antibaryons is different.
However, if the combined symmetryCP is conserved the number ofRH baryons andLH antibaryons is the same.
The net result is no asymmetry. Note thatP plays a secondary role here.

with Eb =
√

k2 +m2
b andEb̄ =

√

k2 +m2
b̄
, andµb andµb̄ are chemical potentials. CPT symmetry gives

mb = mb̄ while in equilibriumb+ b̄↔ γ + γ imposes

µb = −µb̄ .

If, moreover, processes which do not conserve B-number are in equilibrium, giving effectivelyb+b↔
...+ γ + γ , then

µb = µb̄ = 0

Thus the final result is that
fb(k) = fb̄(k)

and no asymmetry may be generated in thermodynamic equilibrium.

One possible scenario for departure from equilibrium is thefollowing. Suppose that initially the
Y and Ȳ are in thermal equilibrium at some temperatureT > MY, nY = nȲ ∝ T3. The abundance is
maintained by processes say likeY + Ȳ ↔ xSM + x̄SM with a rateΓA. Suppose that atT ∼ MY, the
annihilation rate drops below the expansion rate of the universeΓA < H. ThenY andȲ are decoupled
from the thermal bath and their abundancenY/s= nȲ/sstays constant instead of decreasing likee−MY/T .
If at some time after decoupling theY and Ȳ start to decay (this means that we have assumed that
ΓD < ΓA) and no scattering processes likeb↔ b̄are in equilibrium (ΓS< Hdecay), a net baryon asymmetry
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is produced which we may estimate to be of the order of

nB

s
≈ nYBY

s
∼ BY

g∗
,

whereg∗ is the number of degrees of freedom that are relativistic at the time ofY decay. The right way
to do things nowadays is to write and solve a set of Boltzmann equations but the argument above gives
the flavour of baryogenesis.

The scenario discussed above is nice but nowadays GUT baryogenesis is not much in favours.
This is in part because SM anomalous processes that might erase a baryon asymmetry may have been in
thermal equilibrium all the way down to the electroweak phase transition atT ∼ 1 TeV. One way around
is to use the fact that anomalous processes actually violatenot justB but ratherB+L.

Imagine there is initially a leptonic asymmetryLi 6= 0 and thatB− L is conserved. Then SM
anomalous processes in equilibrium in the early universe may partially convert this lepton asymmetry
into a baryon asymmetry

Bf = −1
2

Li and L f =
1
2

Li .

This is a bit naive but a more refined derivation gives a similar conclusion (i.e., a net baryon asymmetry
is generated). This idea is at the basis of leptogenesis, a scenario by which first a lepton asymmetry is
generated and then the lepton asymmetry is partially converted into a baryon asymmetry. The lepton
asymmetry is typically believed to be generated through theCP violating decay of a heavy Majorana
neutrino of massMR. Being a Majorana it may decay into a SM leptonl or SM antileptonl̄ . If CP is
violated, the branching ratior l 6= r l̄ and a net lepton asymmetry is produced on average in the decayof
the heavy Majorana. Decay afterT ∼ MR requires

ΓD ∼ λ 2

4π
MR ∼< H(MR) ∼ g1/2

∗
M2

R

Mpl
−→ MR ∼>

λ 2

4πg1/2
∗

Mpl .

The bound on the Majorana mass depends on the value of the unknown couplingλ . Interestingly, heavy
Majorana neutrinos are invoked to explain the smallness of SM neutrinos, through the see-saw mecha-
nism (see the lectures by P. Hernandez at this school), with

mν ∼ λ 2v2

MR

with v = 246 GeV, which gives
ΓD

H
∼ mνMpl

4πv2 .

Hence small SM neutrino masses go in the direction of having out-of-equilibrium decay of heavy Majo-
rana neutrinos. There are many variations around this idea but, typically the required mass scale is

108 GeV∼< MR ∼< 1015GeV.

This is a very high scale, an unfortunate but quite generic feature of baryogenesis scenarios11.

We summarize here what we have learned about the compositionof the universe in the previous
sections. We seth2 ≈ 1/2.

11There are many scenarios of baryogenesis. For the possibility of creating the baryon asymmetry around the electroweak
scale, see [16].
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Constituent Fraction of Ω today Origin

Photons 1.25·10−5 COBE measurement of CMBR temperature

Neutrinos 10−3 ∼< Ων ,0 ∼< 1.3·10−1 Neutrino oscillations, lower bound
Tritium decay, upper bound

Baryons 0.05 Primordial nucleosynthesis
(CMB anistropies)

Dark matter 0.25 (Large-scale structure)
Dark energy 0.70 SnIa Hubble diagram
Curvature 0 (CMB anisotropies)

The topics in parenthesis will be covered in the last two sections.

7 Formation of large-scale structures

So far we have considered a universe that is perfecly homogeneous and isotropic. This is, however, a first
approximation and we would like also to address the fact thatthere are inhomogeneities on various scales
in the universe, like galaxies, clusters of galaxies and beyond. Inhomogeneities may be characterized by
the density contrast∆ = δρ/ρ whereρ is the average energy density of the fluid being considered. We
saw in the first lecture (see Fig. 6) that∆ ≪ 1 on large scales, say larger than a few tens of Mpc. On
smaller scales,∆ ∼> 1 and non-linear effects are expected to be important. This is the scale of galaxies
and clusters of galaxies, and their formation is a topic which is way beyond the scope of these lectures.
On larger scales, however, a linear analysis should be applicable. The physics is thus fairly simple but
as we shall see, it already tells us a great deal about the universe. The most important lessons of this
section will be (1) that the mechanism that underlies the formation of large-scale structures is simply
gravitational collapse and (2) that in an expanding universe, we need primordial inhomogeneities. In this
way, we shall learn something about important cosmologicalparameters.

We shall continue to describe the content of the universe with simple fluids, like baryons, photons,
or dark matter. The basics equations are those of perfect fluids. Let us consider for simplicity a non-
relativistic fluid describes by its densityρ(~x, t) and velocity field~v. In the presence of gravity, these
equations are

1. Continuity equation or conservation of mass gives

∂ρ
∂ t

+~∇ · (ρ~v) = 0.

2. Euler equationwhich is the equivalent of Newton for a fluid is

∂~v
∂ t

+~v·~∇~v = − 1
ρ

~∇p−~∇Φ .

wherep is the pressure andΦ is the Newtonian potential.

3. Poisson equationgives the Newtonian gravitational potential

∇2Φ = 4πGρ .

We linearize these equations, first assuming that the background is static (fluid at rest~v= 0), with density
ρ̄ and look for the equations for small perturbations.

ρ → ρ̄ + δρ ~v→ δ~v p→ p̄+ δ p Φ → Φ̄+ δΦ
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There is a bit of inconsistency here in assuming a static background, sinceρ̄ 6= 0 → ~∇Φ̄ 6= 0 and the
latter is a source for~v. This is an old issue, already known to Newton, that a static uniform distribution
of matter is unstable with respect to gravitational interactions, as we shall see.

Keeping the leading terms, the continuity equation and Euler give

∂δρ
∂ t

+ ρ̄~∇ ·δ~v = 0

and
∂δ~v
∂ t

= − 1
ρ̄
~∇δ p−~∇δΦ ≡− 1

ρ̄
v2

s
~∇δρ −~∇δΦ ,

where we have used∂ p/∂ρ = v2
s, wherevs is the speed of sound in the fluid. Taking the time derivative

of the continuity equation and the divergence of Euler to eliminateδ~v allows us to write an equation for
the density contrast∆ = δρ/ρ̄

∂ 2∆
∂ t2 −v2

s∇2∆ = ∇2δΦ ≡ 4πGρ̄∆ .

This is the familiar wave equation for a fluid disturbance, with phase velocityvs, in presence of gravity.
Plane wave solutions with wavenumberk have two independent solutions

∆ ∝ e∓iωt+i~k·~x

whereω satisfies the dispersion relation

ω =
√

v2
sk2−4πGρ̄ .

The behaviour of these solutions depends on the sign of the expression in the square root. It is convenient
to introduce theJeans wavenumber

kJ =

√

4πGρ̄
v2

s
.

For k > kJ, corresponding to a regime in which gravity may be neglectedcompared to pressure,ω is

real and inhomogeneitiesδρ behave as sound waves withc = ω/k = vs

√

1−k2
J/k2. If k < kJ, ω is

imaginary and pressure can not prevent an inhomogeneity from growing exponentially, the signature of
an instability,

∆ ∝ e±|ω |t .

The Jeans wavenumberkJ has a simple interpretation. It comes from the ratio of two time scales. On
dimensional grounds, the time characteristic for gravity to act is given byτG ∼ 1/

√
Gρ̄ (‘collapse time’),

while pressure effects act a time scaleτp ∼ λ/vs. The conditionτG ∼ τp givesλJ = 2π/kJ ∼ vs/
√

Gρ̄.

The phenomenon of Jeans instability described above is at the core of the theory of large-scale
structures in cosmology. It may give the impression that inhomogeneities may grow from infinitesimal
perturbations. However, the expansion of the universe (thebackground) changes things in a crucial way.
Taking into account expansion gives (see Kolb and Turner)

∂ 2∆
∂ t2 +2H

∂∆
∂ t

+

(

v2
sk2

a2 −4πGρ
)

∆ = 0.

There is an extra term, linear in the Hubble parameterH. This is the analog of a friction term. Also we
are using comoving coordinates, so thatk (comoving wavenumber) is fixed andkphysical= k/a. For large
wavenumbers (small scales), the solutions are oscillatory(with an amplitude that is decreasing because
of the friction term). For small wavenumbers (large scalesvsk/a≪ 1/H) we may neglect thek2 in the
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equation (neglect pressure). Let us consider for simplicity a matter dominated, flat universe. Using the
Friedmann equation, we may write

∂ 2∆
∂ t2 +2H

∂∆
∂ t

−3/2H2∆ = 0.

We search for solutions of the form∆ ∝ tα . Inserting the differential equation and usingH = 2/3t gives

α(α −1)+4/3α −2/3 = 0.

This equation has two solutions. One isα = −1 or ∆− ∼ H is decreasing. The other one hasα = 2/3 or
∆+ ∝ t2/3 and is growing. This is important so we emphasize

∆+ ∼ t2/3 ∝ a(t)

We see that the effect of expansion is to give a milder, power law behaviour to the instable solution. This
is intuitively reasonable as the source of the instability is diluted by expansion,∼ ρ ∝ 1/t2 12.

The moderate growth of∆ (in the linear regime) in an expanding universe implies thatinhomo-
geneities had to be substantial (ie instead of infinitesimal if instabilities were growing exponentially) in
the past to give rise to the large-scale structures seen today in the universe. One likely solution to this ini-
tial conditions problem is inflation. We shall see in the lastsection that a phase of accelerated expansion
may give rise to a spectrum of primordial inhomogeneities which is consistent with observations.

A powerful way to probe these primordial inhomogeneities isto analyse anisotropies in the CMBR.
This is because in the early universe hydrogen was ionized and the electrons were free. Through Thom-
son scattering

γ +e− ↔ γ +e−

which coupled electrons and photons, and through Coulomb scattering

e− + p↔ e− + p

which coupled electrons and protons (we neglect the contribution of helium in our discussion here), the
photons and baryons were effectively strongly coupled, a sort of photon-baryon fluid. As long as this
coupling is effective, that is, as long as hydrogen is substantially ionized, we expect inhomogeneities
in the density of baryons and in the energy density photons tobe related. Sinceρb ∝ T3 (baryons are
non-relativistic) andργ ∝ T4,

∆b = 3Θ =
3
4

δργ

ργ

where

Θ =
δT
T

.

Hence inhomogeneities in matter should be reflected in temperature inhomogeneities in the CMBR.

For the same reason that we can only see the edge of clouds, we may only observed the photons
that were released around the time when the universe became transparent. This moment is called recom-
bination or sometimes, and more appropriately, last scattering. Naively this took place when the average
energy of photons∼ T ∝ a−1 was of the order of the binding energy of an electron in hydrogenT ∼ 13.6

12There is a neat mechanical analogy. Consider a thin, long stick and put it vertically on your finger, trying to keep it straight.
If you do not move your hand, it falls down rapidly (exponential instability). If you simultaneously let your hand fall down
(diluting gravity), the stick falls more slowly (power law instability).
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Fig. 30: Two views of the universe using conformal timeη and comoving distancesχ . We are at the centre
of the circle today (LHS) or a the tip of the cone (RHS). We may see photons from as far back as the time of
last scattering. The pictures also show the size of the particle horizon at the time of the last scattering, how far
information may have propagated between the Big Bang andzLS.

eV. However, very much like in our discussion of primordial nucleosynthesis in Section 4, there are many
more photons than protons and electrons in the universenb/nγ ∼ 10−9 and these many photons may eas-
ily ionize hydrogen13. This competititon between energy and entropy ensures thatrecombination takes
place at a much lower temperatureT ∼ 3000 K∼ 0.25 eV, corresponding to a redshiftzLS∼ 103.

In the sequel, we will make use of conformal time

η =

∫

dt/a.

One motivation is that photons travel a distanceη in a time intervalη , since

ds2 = dt2−a2dχ2 ≡ 0→ ds2 = a2(dη2−dχ2) .

Hence the lapse of conformal time since the Big Bang is

η0 =

∫ 1

0

dt
a

≡ dPH

weredPH is the distance to the horizon we first met in Section 3. Usingη andχ coordinates, the causal
structure of the universe takes then a very simple form, illustrated in Fig. 30.

Before last scattering, the photon-baryon fluid is essentially described by a single equation forΘ,
which, neglecting the effect of gravity, is simply

Θ̈+v2
sk2Θ = 0

13A further complication is that recombination of an electronin the fundamental is accompanied by the emission of a photon
which may in turn ionize another hydrogen atom, with no net effect. In practice, recombination goes (essentially) through the
2s state which may relax to the fundamental 1s through two photons.
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Fig. 31: Evolution in timeΘ(η) until ηls for k≪ 1/csηls, k = π/csηls andk = 2π/csηls

where dots mean the derivative is taken with respect to the conformal time. This equation reflects the
fact that pressure is important as long as photons and baryons are strongly coupled and so gravitational
collapse of baryons is not possible. Instead the photon-baryon fluid undergoes acoustic oscillations, with
corresponding heating and cooling of the fluid. This stops atlast scattering,η = ηLS, when baryons and
photons decouple. While pressure drops and baryons may start collapsing, the photons travel freely, car-
rying information about their temperature at last scattering which will be observed today as anisotropies
in the CMBR temperature (see Fig. 30). AssumingΘ̇(0) = 0 (a prediction of inflation), the solution of
the wave equation is

Θ(vsnLS) = Θ(0)cos(kvsηLS) .

Solutions for differentk as a function of conformal time are shown in Fig. 31. Modes with kvs ≪ ηLS

do not evolve much beforeηLS. SinceηLS is the comoving size of the horizon at last scattering, these
correspond to perturbation on very large scales, larger than the size of the horizon atηLS. Increasingk,
the mode may undergo more and more oscillations. Those with their wavenumber satisfying

kn =
nπ

vsηLS

with n integer, correspond to maximum/minimum of∆ at last scattering. This is seen in Fig. 32 which
showsΘ2 at last scattering as a function ofk.

It is convenient to decompose temperature fluctuations in the CMBR in spherical harmonics, the
analog on the sphere of Fourier modes,

ΘLS(θ ,φ) =
∞

∑
l=1

l

∑
m=−l

ΘlmYlm(θ ,φ) .

A fluctuation on the scaleλ ∼ 1/k sustains an angle approximately

θ ≈ λ/D ,

where D is the comoving distance to the time of last scattering. To good approximation,D ≈ η0. Sincel
is conjugate to the angleθ , roughly l ∼ Dk. Hence the peaks inΘ2 should correspond to peaks at

ln ≈ n
Dπ

vsηLS

in the power spectrum of the signalΘ,

〈Θ2
l 〉 ≡ (2l +1)Cl
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Fig. 32: Θ2 (normalized to one) atηLS as a function ofk (normalized tovsηLS). There is a succession of peaks at
kn = nπ/vsηLS.

obtained by averaging overmnumbers14.

Assuming that the universe is flat, matter dominated since last scatteringa ∝ t2/3 givesa ∝ η2 and
thus

η0

ηLS
=

1√
1+zLS

≈ 1
30

corresponding to an angle of about 2◦ and l1 ∼ 200 (usingvs ∼ 1/
√

3 for the photon-baryon fluid). A
compilation of data is shown in Fig. 33. With some imagination, one may recognize the peaks seen in
Fig. 32. We may right away learn two things from these data.

1. The position of the first peak is related to the size of the horizon at last scattering. Assume you
know the latter. By measuring the position of the peaks we actually measure the angular size that the
horizon sustains on the sky. If the geometry is spherical, the angle would be larger than in a flat universe
as Fig. 34 suggests. Correspondingly, the first peak would beshifted to the left (smallerl corresponds to
largerθ on the sky). The opposite would occur for an hyperbolic geometry. Data are consistent with a
flat universe.

2. On the largest scale, the CMBR anisotropies probe primordial inhomogeneities (not affected
by local processes). We know actually since COBE thatΘ ∼ 10−5 (small l limit of the figure). Now,
remember that we have seen that matter inhomogeneities growlike

∆b ∝ a =
1

1+z

in a flat, matter-dominated universe. On large scales, we seestructures today that have∆b = O(1) on
scalesO(100 Mpc), which at the time of last scattering correspond to scales that are beyond the horizon.
We would thus expectΘ = 1

3∆b ≈ 10−3 atz= zLS, substantially larger than the amplitude inhomogeneities
observed15.

14If the anisotropies are statistically isotropic, the information in them’s is redundant, or rather say, gives an independent
sample of the power in model . Of course, on large angular scales (smalll ) the sample is small and uncertainty comparitively
large. This is the basis of the so-called ’cosmic variance’ which leads to a large error on how accurately the power spectrum
may be measured∆Cl ∝ Cl /

√
2l +1.

15Strictly speaking we should also take into account the fact that if there were only baryons, the universe would be open. Itis
possible to show that the growth of inhomogeneities slows down when the expansion becomes curvature dominated, an effect
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Fig. 33: Observation of the power spectrum of fluctuations in the CMBR, together with a theoretical prediction
with anΩdm≈ 0.25 andΩb ≈ 0.05 flat universe. From ref. [11].

θH < θH | f lat θH = θH | f lat θH > θH | f lat

Fig. 34: In a flat universe, the horizon at last scattering (supposed to be known) sustains an angleθH on the sky. If
the geometry is spherical, light rays are bent inward and theangle would appear larger. The opposite is the case if
the geometry is hyperbolic.

This turns out to be a strong indication for the existence of cold dark matter. The picture is (see
Fig. 35) as follows. There is dark matter and it is composed ofparticles that do not interact with photons,
baryons, and electrons. These particles were non-relativistic at the time when there was equality between
the energy density in radiation and that in matteraeq (this is necessary because in a radiation-dominated
inhomogeneities only grow logarithmically). AtaEQ this dark matter, which is non-interacting and thus
feels no pressure, collapses as∆dm ∝ a(t). In the meantime, photons and baryons are strongly coupled
and, untilaLS, undergo acoustic oscillations. At last scattering, the baryons become free and they may
fall in the gravitational potential of the dark matter. End of story.

The power spectrum of Fig. 33 is quite different from the naive form of Fig. 32. Explaining all
this in detail would take us way beyond these lectures (see Refs. [17], [18] or [19]). There is one feature

which makes the conclusion that fluctuations are too small ina universe with only baryonic matter even more dramatic. See
Kolb and Turner.

45



Fig. 35: Schematic evolution of dark matter, baryons, and photons between matter-radiation equality and today.

that I would like to emphasize, however, which is the effect of baryons on the relative height of the peaks.

If we take into account gravity and baryons, the equation forΘ becomes slightly more compli-
cated:

(1+3ρb/4ργ )Θ̈+k2v2
sΘ ≈−(1+3ρb/4ργ )k

2v2
sΦ .

whereΦ is the Newtonian gravitational potential. Let us discus first the impact of introducingΦ, so
assumeρb ≪ ργ . It so happens thatΦ may be taken to be constant in first approximation. Then the
equation may be rewritten as

Θ̈e f f +k2v2
sΘe f f = 0,

with Θe f f = Θ + Φ. The meaning ofΘe f f is the following. Imagine that a photon of frequencyν is in
a gravitational potential wellΦ < 0 at last scattering. In climbing from the gravitational well, it loses
energy and its frequency is redshifted by a factorδν/ν = Φ. Sinceδν/ν ≡ δT/T, the Newtonian
potential will manifests itself as a temperature fluctuation on top of the intrinsic temperature fluctuation
Θ. Hence the observable quantity is the combinationΘe f f. The relevant solution to the equation forΘe f f

is
Θe f f(η) = Θe f f(0)cos(kvsη) .

This is called the Sachs-Wolfe effect16. Note that to a potential well hence a region of higher density,
Φ < 0, corresponds a lower temperature.

16If Φ is constant after recombination, potential wells on the wayof photons between last scattering and us have no net effect
as the losses are compensated exactly by gains and the other way around. If, however,Φ has some time dependence, as is
the case if the universe becomes dominated by a cosmologicalconstant, then there is an extra contribution to the temperatures
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Fig. 36: Impact of baryons onΘ2
e f f.

Now consider the effect of baryons,ρb/nγ 6= 0. The effect of baryons is to reduce the sound
velocity vs → cs = vs/

√

1+3ρb/4ργ and to shift the origin of oscillations ofΘe f f. As the observed
temperature fluctuation is stillΘe f f the solution becomes

Θe f f(η) = (Θe f f(0)+3ρb/4ργ Φ)cos(kcsη)−3ρb/4ργ Φ .

ForΦ < 0 (attractive well), the net effect of the shift is to lower the even peaks and to raise the odd ones,
with a difference between peaks∝ ρb/ργ , Fig. 36. Intuitively, baryons tend to accumulate in a potential
well and to increase compression peaks (odd peaks). Hence the difference between the first atl ∼ 200
and the second peak atl ∼ 400 in CMBR anisotropies data gives a measurement ofρb/ργ and this of the
baryon asymmetry of the universe.

Many other cosmological parameters may be extracted from analysis of CMBR anisotropies, to-
gether with input from large-scale surveys. Of particular interest to high-energy physicists are the con-
straints that may be put on neutrino masses. The constraintsfrom WMAP are limited because neutrinos
are a subdominant component of matter at the time of last scattering (see however the latest WMAP data
release). Since neutrinos are very light, they have substantial momentum at the time of matter-radiation
equality. Their motion prevents them from collapsing untilthe time they become non-relativistic. In the
meantime they may propagate a distanceλFS called the free streaming scale. If neutrinos were to consti-
tute a substantial fraction of dark matter, no structure could form on scalesλ ∼< λFS. This is the imprint
of so-called Hot Dark Matter. Observations indicate that dark matter is rather made of Cold Dark Matter
(i.e., a form of dark matter with little momentum at matter-radiation equality that may form structures on
all scales) and puts a limit (that is large-scale surveys which probe smaller cosmological scales than the
CMBR anisotropies) on neutrino masses (typically a fraction of eV depending which data are taken into
account, see [20] and lectures by P.Hernandez at this school).

To conclude this section, I give a fair (albeit personal) summary of joint WMAP and other data
below.

Ωb = 0.04

Ωdm = 0.26

anisotropies called the integrated Sachs-Wolfe effect.
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H = 70km·s−1 ·Mpc−1

Ω0 = 0.950

Ω = 1

ΩΛ = 0.70
pΛ

ρΛ
= −1

n = 0.95

The flat, cold dark matter plus cosmological constant orΛCDM or Concordance Modelis now the
standard model of cosmology (see Fig. 22).

The parametern in the list above is new to us. This is the spectral index, to bedefined in the last
section. It tells us that the spectrum of temperature fluctuations in the CMBR is nearly scale invariant.
That the spectrum should be such is one of the predictions of inflation. That our universe should be
spatially flat is anothter one. The most puzzling result is the presence of a cosmological constant, or at
least the presence of a fluid that behaves like a cosmologicalconstant (dark energy). A cosmological
constant leads to accelerated expansion, one of the key features of inflation.

8 Inflation

An early phase of accelerated expansion or inflation does thefollowing:
• It solves the flatness problem

• It solves the horizon problem

• It generates primordial inhomogeneities

• It predicts that the spectrum of inhomogeneities is scale invariant

All these features are consistent with observations. What caused inflation is so far unknown but it is easy
to implement it in a phenomenological way and thus not challenges the Big Bang model [21].

We have not paid much attention to this feature, but it is quite puzzling that our universe is so flat.
After all this is just one possible solution among all the possible geometries. There is also a more critical
problem called theflatness problem. The problem is the following. Take the Friedmann equation and
write it as

|1−Ω| = |K|
a2H2 ∝ ȧ−2 .

From the Raychaudhuri equation (and our intuition of gravity)

ä
a

= −4πG
3

(ρ +3p) ,

we know that for both a matter or radiation dominated universe ȧ decreases. Hence we expect|1−Ω| to
increase with time. For instance take|1−Ω| = O(10−2) today. Then atTEQ∼ 30000 K

|1−Ω| = O(10−6)

while atT ∼ 1 MeV
|1−Ω| = O(10−18) .

You may go back further in the past. The conclusion is that thegeometry of the universe had to be very
very close to flat for the universe to appear flat today.

A simple remedy is to make the size of the universe very large,much larger than our horizon. We
can achieve this dynamically if the universe goes through a phase of accelerated expansion, or inflation,
since then

ä > 0
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and
|1−Ω| ∝ ȧ−2 → 0

How long should inflation last? Assume that inflation is driven by a fluid such thatp ≈ −ρ for some
time. ThenH ≈ constant and

a = aie
H(t−ti )

Assume inflation happened at an energy scaleO(1016) GeV. Taking

H ∼ (1016GeV)2

MPl

∼ 1014GeV and with ∆t ∼ 107tPl ∼ 10−36s

wheretPl is the Planck time, we then see that the scale factor would have grown by a huge factor within
a very short time

af /ai ∼ e100∼ 1044 .

Compare this witha0/aLS ∼ 103, the change of the scale factor between last scattering and today and
that took about 13·109 years.

Another issue is why our universe is very uniform. Consider for instance the time of last scattering.
We see essentially the same CMBR temperature (to within 105) in all directions. We have seen that the
horizon atzLS sustains an angle of about 2◦ on the sky. Physical conditions may be pretty uniform within
the scale of the horizon, but how come that they are the same onlarger scales? The largest distance we
may probe is the distance to the horizon today,

dH |today∼ H−1
0 ≈ 1028cm.

At T ∼ 1015 GeV the universe was much smaller. Our horizon today occupied a region of aboutd ∼
10−28H−1

0 ∼ 1 cm. All our universe within one cubic cm. This was small, butis actually much larger
than the particle horizon at that time, which was

dH ∼ H−1 ∼ 10−14GeV∼ 10−28cm.

Inflating this small distance by a factor of 1028 ∼ e65 would give a simple solution to the horizon or
homogeneity problem. This is illustrated in Fig. 37.

The simplest model of inflation posits the existence of a scalar fieldφ with potential

V(φ) =
1
2

m2φ2 .

Suppose that the scalar field is initially shifted away from its minimum and that it has a small kinetic
energy. Also assume it is homogeneous. The stress-energy tensor of the scalar field

Tµ
ν = ∂ µφ∂ν φ −gµνL

whereL is the Lagrangian density, takes the form of that of a perfectfluid

Tµ
ν = diag(ρ ,−p,−p,−p)

with energy densityρ and pressurep:

ρ ≈ 1
2

φ̇2 +
1
2

m2φ2 ≈ 1
2

m2φ2

and

p≈ 1
2

φ̇2− 1
2

m2φ2 ≈−1
2

m2φ2
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Fig. 37: How inflation solves (RHS) the horizon problem (LHS). Note that the lapse of physical time (t) since
inflation is about 13·109 years while that of inflation itself lasts an instant.

or
p≈−ρ .

This is all we need for inflation to occur. There are many variations around this simple scheme (called
chaotic inflation —the name comes from the initial conditions necessary to initiate inflation—) but the
basic idea stays the same. There is some field, called the inflaton, that evolves slowly so that its potential
energy is larger than its kinetic energy. Contrary to what one may think, that the field is slowly evolving
does not require much tuning. This is because the equation ofmotion of our scalar field in an expanding
universe is

∂ 2φ
∂ t2 +3H

∂φ
∂ t

+m2φ = 0.

The effect of expansion is in the friction term. If the energydensity is dominated by the potential of the
scalar field

H2 ∼ Gm2φ2 ≡ m2φ2

m2
pl

.

If φ ≫ mPl initially, the friction term is dominant over the second derivative and the field rolls down
slowly. This stops at roughlyφ ∼ mpl, at which points the kinetic energy of the scalar field is no longer
negligible and inflation stops. Eventually the scalar field oscillates around its minimum. The universe
after inflation is very big but also very cold as everything, including any thermal bath (or baryon number
for that matter), has been diluted by the exponential growthof the size of the universe. It is expected
that the inflaton is coupled to SM fields (or its siblings) and that its energy stored in oscillations may be
transformed in heat. How thisreheatingtakes place is a complex problem and is not fully understood
yet.

This is so far a classical process. However, the acceleratedexpansion of the universe during
inflation also has a quantum manifestation. This effect is a bit analogous to the phenomenon of pair
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production in the presence of a strong electric field. It is also closely related to the Hawking radiation of
black holes. The details are beyond the scope of these lectures but let me give you the flavour. Consider
some massless scalar fieldχ during inflation. Its equation of motion, using comoving Fourier modes, is

∂ 2χ
∂ t2 +2H

∂ χ
t

+
k2

a2 χ = 0.

It is convenient to use conformal timedt = adη . Then the equation becomes

χ̈ +2aHχ̇ +k2χ = 0.

During inflationH ≈ const and leta≈ eHt 17. The conformal time may be then expressed as

η = − 1
H

e−Ht and aH ≡− 1
η

.

Now we eliminate the friction term by using a field redefinition χ = ηv(η). The equation becomes
finally

v̈+

(

k2− 2
η2

)

v = 0.

This is like the equation of an harmonic oscillator. Initially we may havek2η2 ≫ 1 and the solutions are
simply oscillations, like in vacuum. However, as time goes by, k2η2 decreases (remark|η | → 0 toward
the future) and the equation becomes that of a reversed oscillator, the landmark of an instability. The
quantization of this system leads to the conclusion that, during inflation, modes are created out of the
vacuum (like electron-positron pairs may be created by a strong electromagnetic field). While〈χ〉 = 0,
the correlator ofχ , which is equivalent to the power spectrum, is non-vanishing:

Pχ(k) = 〈χ2〉 ∝
H2

k3 .

For H ∼ constant, the spectrum of fluctuations inχ is scale-invarianti.e.

〈χ2(x)〉 ∝
∫

d3kPφ(k) ∝
∫

dk
k

H2

in the sense that there is the same power per log interval ofk.

A similar result holds for fluctuations of the scalar field that triggers inflation or inflatonφ . The
discussion is, however, made complicated by the fact that fluctuation in a scalar quantity is, in general, not
invariant under general coordinate transformations. However, the essence of the story is that fluctuations
generated in the inflaton field may be expressed as fluctuations in the Newtonian potential for modes
larger than the size of the horizon. The fluctuation in the inflaton may disappear but fluctuations in
the Newtonian potential survive (they stay constant), and these in turn leave their imprint on the dark
matter. The spectrum of fluctuations is predicted to be (nearly) scale invariant. This feature, called the
Harrison-Zeldovich spectrum, is supported by both the CMB and the large-scale structure surveys.

9 Epilogue

Accelerated expansion is easy to implement, but difficult tocomprehend. For instance, just addding a
constantV0 to the potential of a scalar field gives a contribution to its stress-energy tensor

δTµ
ν = V0δ µ

ν ,

17Different normalization than in the rest of the lectures.
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which is equivalent to adding a cosmological constant

ρ = −p = V0 .

To agree with observation we could decide thatV0 is zero (or very small) but the problem is that the cos-
mological constant strikes back at the quantum level. Indeed, in quantum field theories we are effectively
dealing with harmonic oscillators, labelled by momentum, with zero energy 1/2ω ≡ 1/2

√
k2 +m2 (or

−1/2ω for fermions) per degree of freedom. Then a naive summation over the modes of a scalar field

δVquantum∝ ∑
k

1
2

√

k2+m2

gives a divergent result,δVq. → ∞. In quantum field theory we usually discard these contributions be-
cause only energy differences matter when we compute cross-sections or discuss symmetry breaking.
HoweverδVq. has weight and it is not clear on which basis we may get rid of itif we take into account
gravity. If instead we assume that the summation over modes is cut off at the Planck energy scale, we get

δVq. ≡ δρΛ ∼ m4
Pl

This is about 120 orders of magnitude than what is observed, the current accelerated expansion of the
universe giving

ΩΛ ≈ 0.70 → ρΛ ≈ (2·10−3 eV)4 .

This so-called cosmological constant problem is one of the biggest issue in fundamental physics (see for
instance Ref. [22] for a review)18.

Another puzzling facet of the cosmological constant problem is that theΩΛ observed is close but
not equal to one. Since the contribution toΩ of a true cosmological constant was negligible until recently
but will be dominant in the near future,ΩΛ ∼< 1 means that today is a special moment in the history of the
universe, see Fig. 38. This so-called coincidence problem has motivated the construction of dynamical
models of cosmological constant or dark energy models. Their equation of state generically departs from
that of a true cosmological constant, a feature that may be constrained by further studies of the Hubble
diagram and large-scale structure.

It is, however, fair to say that the relation between most models of dark energy and more funda-
mental principles (like, say, string theory or quantum gravity) is rather loose and the situation regarding
the nature of dark energy is likely to stay unsettled for sometime.
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Appendices

I. Conversion factors

1GeV ≡ 1.6022·10−10J

≡ 1.1605·1013K

≡ 1.7827·10−27kg

1GeV−1 = 1.9733·10−16m

= 6.6522·10−25s

1cm ≡ 5.068·1013GeV−1

1s ≡ 1.519·1024GeV−1

1g ≡ 5.608·1023GeV

1AU = 1.496·1011m (Astronomical Unit)

1pc = 3.086·1016m (parsec)

1year = 3.156·107 s

1” = 4.85·10−6 rad

II. Some cosmological parameters

mPl =
1√
GN

= 2.2×10−5g = 1.2209·1019 reduced Planck mass

tPl = 5.4×10−44s Planck time
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lPl = 1.6×10−33cm Planck length

H0 = 100hkm ·s−1 ·Mpc−1

H−1
0 = 9.78h−1 Gyr = 2998h−1 Mpc

ρc0 = 3M2
Pl H

2
0 = 2.775h−1×1011 M⊙

(h−1Mpc)3 critical density

= 1.88h2×10−29g·cm−3 = (3×10−3eV)4h2

= 10.5h2 GeV·m−3

Ωγ ,0h2 = 2.47×10−5 photon density parameter

ργ0 = 4.61·10−34(Tγ0/2.725K)4 g·cm−3

nγ0 = 410(Tγ0/2.725K)3 cm−3

nν0 = 3/11nγ0 = 113(Tγ0/2.725K)3 cm−3

h2Ων0 =
∑i mνi

94eV
(Tγ0/2.725K)3

ΩR,0h2 = 4.17×10−5 three massless neutrinos

η = nb0/nγ0 ≈ 6·10−10
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