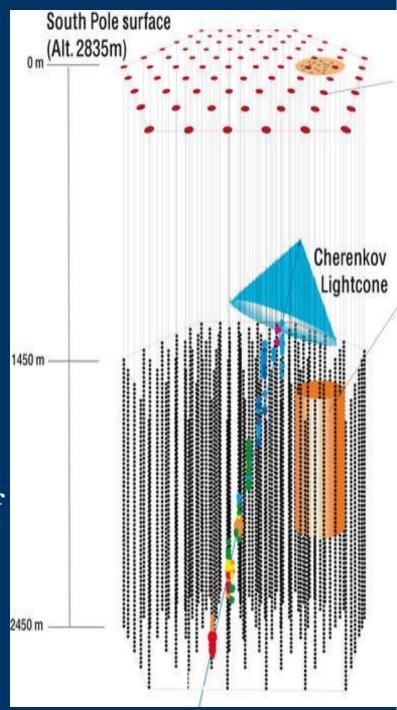
Tau neutrino detection in IceCube via the τ -> μ channel

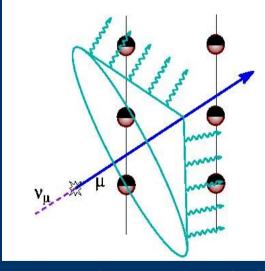


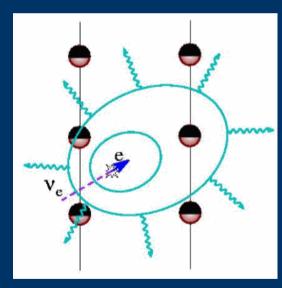
Bechet Sabrina – ULB BND Summer School 2009

The telescope IceCube

- In Ice between 1500 m and 2500m
 - 80 strings
 - 60 DOM/string
- Search of cosmic neutrinos
 (supposed to be emitted by violent astrophysical objet)
- Obsvervation of Cerenkov light emitted by secondary particle coming from the C.C interaction of neutrinos

Tau neutrino search in IceCube

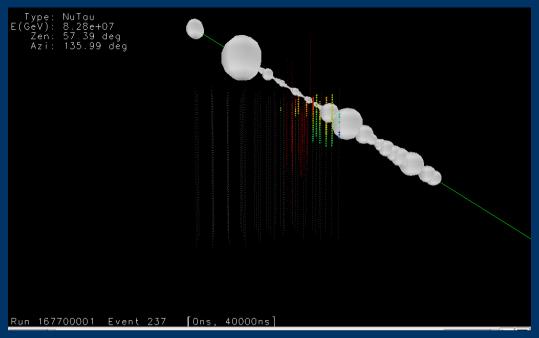

 ν can be observed on earth because of neutrino oscillations in cosmological scale

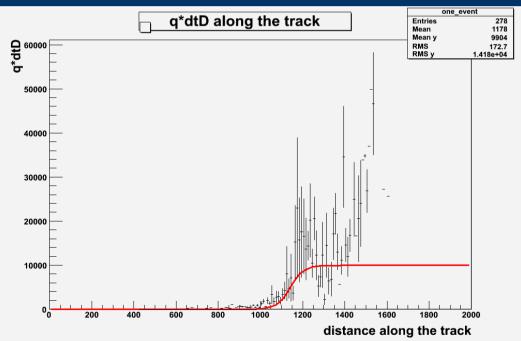

- At source: $v_{\parallel}:v_{\parallel}:v_{\parallel}=2:1:0$

- On Earth: $v_{\mu}:v_{e}:v_{\tau}=1:1:1$

IceCube has the capabily to detect all flavor of neutrino

due to its large size



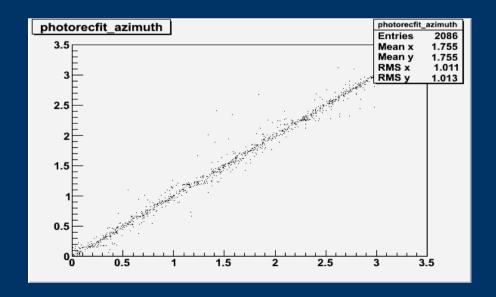

- Tau neutrino are almost background free
- Distinctive signature

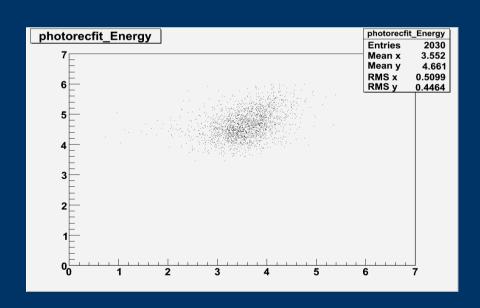
Features of the decay τ -> μ

• V_{τ} N-> τ X $\tau \rightarrow \mu V_{\tau} V_{\mu} \text{ with } \Gamma_{\mu} \sim 17\%$

- τ
- decay inside the detector volume
- To detect the tracks: energy betwen PeV and EeV
- Muon energy loss->brem, e⁻e⁺
- Tau energy loss->photonuclear process
- ->muon track is brighter than the tau
- Problem: brightness variation due to the ice nonuniformity

- τ->μ MC in the IceCube detector (40 strings)
- μ track brightness =
 (3-7)* τ track brightness


- Tau2mu characterization :
 - The charge distribution follows a sigmoid function
 - f(x)=a/(1+exp(-b(x+c)))where
 - a=height of the step
 - b=sharpness of the transition
 - c=center of the step along x


Reconstruction of τ -> μ event

- The idea is to minimize a likelihood function to find the following parameters:
 - The position of the decay
 - The direction of the particle
 - The energy loss of the particle
- The likelihood represent the probability to observe n_i photons in the ith pulse when the expected charge is μ_i :
- $\mathcal{L}_{\tau 2\mu} = \prod_{i=1}^{K} \frac{\mathrm{e}^{\mu_i}}{n_i!} \mu_i^{n_i}$
- Tau2mu-llh is based on the following hypothesis:
 - The charge (or energy loss) along the track follows a step function

Reconstruction of τ -> μ event

- Deals with ice properties and photons propagation via photons tables
- Use an infinite track of cascade as model for tau->mu track
- Still in progress...

