$Z^0 \rightarrow \tau^+ \tau^- \rightarrow$ Method to determine hadronic tau efficiency

Gordon Fischer

Deutsches Elektronen Synchrotron - DESY

Summer school Rathen 2009

 $Z^0 \rightarrow \tau^+ \tau^-$

What do I have to do?

Efficiency determination

Embedding method

Summary and Outlook

- A - The sec

What do I have to do?

"....determine the hadronic tau selection efficiency from channel $Z^0\to \tau^+\tau^-\to had\,\ell$ in first data at ATLAS...."

How?

Why Tau Leptons?

Gordon Fischer (DESY)

ヘロト 人間 とくほとくほど

Why Tau Leptons? Higgs search!

- Higgs boson couples to mass favouring the decay to the heavier tau-leptons
- ► for light Higgs masses → τ τ final state becomes important
- $b\bar{b}$ is difficult to measure
- third generation is very useful for new physics!

Figure: BR for different possible Higgs masses

 $Z^0 \to \tau^+ \tau^-$

Why Tau Leptons? SUSY search!

- τ leptons often final state in SUSY models
- ▶ $\tilde{\tau}_L$, $\tilde{\tau}_R$ mixing $\rightarrow \tilde{\tau}_1$, $\tilde{\tau}_2$ $\rightarrow \tilde{\tau}_1$ and τ production enhanced
- ▶ BR for $\tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau$ larger than for e or μ decays
- *τ* final states provide information for e.g. *τ̃* masses

Figure: typical SUSY chain with τ 's in the final state

Motivation for the channel ${\rm Z}^{0} \to \tau^{+}\tau^{-} \to had\,\ell$

- In first data Z⁰ → τ⁺τ⁻ → had ℓ is useful (τ) channel for (τ) trigger studies, with hadronic channel trigger studies not possible
- ▶ most important control channel (together with $W \rightarrow \tau \nu$ and $t \rightarrow \tau \nu b$) to control the tau reconstruction
- ► Comparison with $Z^0 \rightarrow \mu^+\mu^-$ or $Z^0 \rightarrow e^+e^-$ allows efficiency determination using Z-Resonance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

different τ decay channels \rightarrow what does that mean?

- three different ττ channels:
- leptonic channel: two leptons (e, μ, τ)
- semileptonic channel: one lepton and one hadron (e.g. π...)
- hadronic channel: two hadrons

τ-decay:

leptonic	$(35.2 \ \%)$
$\tau \rightarrow e + \nu_e + \nu_\tau$	
$\tau \rightarrow \mu + \nu_{\mu} + \nu_{\tau}$	
hadronic	
1 Prong	(46.8 %)
$\tau \rightarrow \pi^{\pm} + \nu_{\tau}$	
$\tau \rightarrow \pi^{\pm} + n \cdot \pi^{0} + \nu_{\tau}$	
3 Prong	(13.9 %)
$\tau \rightarrow \pi^{\pm} + \pi^{\pm} + \pi^{\pm} + \pi^{\pm} +$	ν_{τ}
$\tau \rightarrow \pi^{\pm} + \pi^{\pm} + \pi^{\pm} + \pi^{\pm} +$	$n \cdot \pi^0 + \nu_{\tau}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

important detector moduls for hadronic τ identification

- ► to select 1 prong and 3 prong decays → good tracking system
- τ Jets have a smaller EM-radius than QCD Di-Jets
 - \rightarrow for τ Jets and QCD Di-Jets separation good calorimeter system required
- QCD background is a big challenge!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Selection cuts

Event cuts:

- Missing E_T and Sum E_T (QCD BG reduction)

Particle cuts:

- trigger e10, mu10i
- P_T for Tau-Jet or Lepton candidate
- |Charge| and η

 $-m_T$

- different identification cuts
- for τ, ℓ combinations:
 - $|\Delta \Phi_{TauJet, Lepton}|$
 - invariant Mass window

- opposite minus same sign charge (OS-SS) Assumption: for Background OS-SS \approx 0 (for statistical reasons)

 \Rightarrow good background rejection

Z->mumu Z->ee

Figure: m_T distribution for final state leptons

Gordon Fischer (DESY)

21.09.2009 10/22

τ -efficiency

hadronic τ efficiency is defined as:

$$\epsilon_{\tau \to had} = \frac{N_{Z^0 \to \tau^+ \tau^-}^{sel}}{N_{Z^0 \to \tau^+ \tau^-}^{ini} \cdot BR_{\tau \to had} \cdot BR_{\tau \to lep} \cdot \epsilon_{Z^0 \to \tau^+ \tau^-}^{kin} \cdot \epsilon_{\tau \to lep}}$$
(1)

possible to substitute

$$N_{{\rm Z}^0\to\tau^+\tau^-}^{ini}$$

with

$$\frac{N_{Z^0 \to \mu^+ \mu^-}^{sel} \cdot \frac{BR_{Z^0 \to \mu^+ \mu^-}}{BR_{Z^0 \to \tau^+ \tau^-}}}{\epsilon_{Z^0 \to \mu^+ \mu^-}^{kin} \cdot \epsilon_{\mu}^2}$$
(2)

Finally for efficiency calculation:

$$\epsilon_{\tau \to had} = \frac{\epsilon_{Z^0 \to \mu^+ \mu^-}^{kin}}{\epsilon_{Z^0 \to \tau^+ \tau^-}^{kin}} \cdot \frac{N_{Z^0 \to \tau^+ \tau^-}^{sel} \cdot BR_{Z^0 \to \mu^+ \mu^-} \cdot \epsilon_{\mu}}{N_{Z^0 \to \mu^+ \mu^-}^{sel} \cdot BR_{\tau \to lep} \cdot BR_{\tau \to had} \cdot BR_{Z^0 \to \tau^+ \tau^-}}$$
(3)

Parameter for $\mathcal{L} = 100 \ pb^{-1}$

- all BR available from PDG
- ▶ kinematic efficiencies (systematic studies for uncertainties of kin. efficiencies upcoming! Assume error O(10 %) just in order to check whether this would lead to acceptable order of magnitude of overall error)

$$\begin{split} \epsilon^{kin}_{\rm Z^0\to\mu^+\mu^-} &= 0.26 \pm 0.026 \\ \epsilon^{kin}_{\rm Z^0\to\tau^+\tau^-} &= 0.0230 \pm 0.002 \end{split}$$

selected number of events

$$egin{aligned} N^{sel}_{Z^0 o au^+ au^-} &= 219 \pm 14 \ N^{sel}_{Z^0 o \mu^+ \mu^-} &= 21517 \pm 147 \end{aligned}$$

Muon efficiency (uncertainty from ATLAS Note)

$$\epsilon_{\mu} = \sqrt{\frac{\frac{N_{Z^{0} \to \mu + \mu^{-}}^{sel}}{\frac{\sigma_{Z^{0} \to \mu + \mu^{-}} \cdot 100pb^{-1}}{\epsilon_{Z^{0} \to \mu + \mu^{-}}^{kin}}} = 0.85 \pm 0.05$$

Current values for hadronic efficiency

Tau-Jet, Tau-Lepton combinations for $\mathcal{L} = 100 \ pb^{-1}$

Signal	OS	SS	OS-SS
selected taus	208	11	197
selected taus truthmatched	201	2	199
Background	OS	SS	OS-SS
selected taus	96	91	5

- hadronic efficiency ϵ_{had} for (OS-SS) (uncertainty with error propagation) ϵ_{had} (Signal) = 0.537 \pm 0.0642 ϵ_{had} (Signal (truth)) = 0.542 \pm 0.0654 ϵ_{had} (Signal + BG) = 0.550 \pm 0.073
- effects from selection uncertainties have to be studied in detail

4 E N 4 E N

Challenge: determine kinematic efficiency for $Z^0 \to \tau^+ \tau^-$ and

 ${\rm Z}^0 \to \mu^+ \mu^-$

- ► don't know all detector (and trigger) effects in detail → challenge to determine $\frac{\epsilon_{z^0 \rightarrow \mu^+ \mu^-}^{kin}}{\epsilon_{z^0 \rightarrow \tau^+ \tau^-}^{kin}}$
- Idea ¹: select μ pairs from Z decay (in real data)
- \blacktriangleright kinematic behaviour of μ and τ (before decaying) is the same \rightarrow allowed
- replace μ with τ
- let τ decay and run full reconstruction chain again
- \blacktriangleright compare number of (kinematic) selected τ and $\mu \rightarrow$ no more initial information needed

¹Markus Schumacher, Nicolas Möser (Uni Bonn), Martin Schmitz (Uni Bonn) et al.

recipe for kinematic efficiency determination from data

- ▶ select μ pairs from $Z^0 \rightarrow \mu^+ \mu^-$ with $p_T > 5$ GeV, opposite charge
- determine correction factor for lepton $p_T \longrightarrow \xi = \frac{E^2 m_\tau}{|p|^2}$ and replace μ with τ
- ► let τ decay (TAUOLA) \rightarrow digitisation \rightarrow reconstruction \rightarrow embedding $\rightarrow Z^0 \rightarrow \tau^+ \tau^-$
- Embedding $\rightarrow \Delta \mathbf{R}$ matching of τ to corresponding μ
- ► all track segments in muon spectrometer are deleted \rightarrow track information from Z $\rightarrow \tau \tau$ events
- ► Track particles and tracks of μ are deleted and replecad by tracks from Z → $\tau\tau$ events
- all higher-level objects and missing et will be reconstructed (Offline reconstruction (e.g. MuTag or STACO)

► run the kinematic selection and ratio $\frac{\epsilon_{Z^0 \to \mu^+ \mu^- original}^{kin}}{\epsilon_{Z^0 \to \tau^+ \tau^- replaced}^{kin}}$ yields the required efficiency!

Performance plots

 E_T for visible τ vs. Full detector energy on:

- case 1: truth level
- case 2: reconstruction level with truth match
- case 3: reconstruction level
 without truth match

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

case 2: reconstructed (and truth matched) τ 's

 $\blacktriangleright \implies \tau$ pair energy contribution relative small

$\text{Performance plots} \rightarrow \text{Embedding}$

- choose $Z^0 \rightarrow \mu^+ \mu^- \rightarrow$ full embedding chain
- compare with regular $Z^0 \rightarrow \tau^+ \tau^-$ sample (same production)
- plot p_T from reconstructed τ
- compare R = ^{#τℓ}/_{#µµ} for truth MC and Embedding:

< <p>A < </p>

Sample	events	R	$\Delta R/R$
MC truth	$\frac{271\pm16}{2131\pm46}$	$\sim 0.120 \pm 0.01$	\sim 0.08
Embedding	$\frac{13\pm4}{122\pm11}$	\sim 0.106 \pm 0,04	\sim 0.40

A B F A B F

Summary and Outlook

Summary:

- τ and μ kinematic well understood
- technical problems solved
- embedding method works fine (on this level)

Outlook:

- of course more statistic needed
- disussion of further uncertainties (e.g. μ selection, TAUOLA, effects from underlying events..)
- more detailed studies of embedding tool will be done

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backup

Gordon Fischer (DESY)

イロト イヨト イヨト イヨト

Embedding method in more detail

- $\mu\mu$ declared as $\tau\tau \rightarrow$ four vectors together with four vector of Z boson are written in HEPEVT format
- ► ASCII file read in into TAUOLA (→ lets τ decay) and PHOTOS (→ final state radiation)
- ▶ fed into ATLAS detector simulation, digitisation, reconstruction
- Embedding $\rightarrow \Delta R$ matching of τ to corresponding μ
- ► all track segments in muon spectrometer are deleted \rightarrow track information from Z $\rightarrow \tau \tau$ events
- ► Track particles and tracks of μ are deleted and replecad by tracks from Z → $\tau\tau$ events
- all higher-level objects and missing et will be reconstructed (Offline reconstruction (e.g. MuTag or STACO)

Embedding flow

Figure 2: flowchart of the embedding procedure.

 $Z^0 \rightarrow \tau^+ \tau^-$

イロン イ理 とく ヨン イヨン