Investigations of 3D Silicon Strip Detectors

Michael Köhler University of Freiburg

SLHC: More Radiation Hardness Needed

~ 2019: luminosity upgrade of the LHC (super LHC)
→ Peak luminosity increased tenfold: L=10³⁵ cm⁻² s⁻¹

- High radiation level causes considerable radiation damage in silicon tracking sensors
- Three main effects of radiation damage in silicon:
 - Higher depletion voltage
 - Higher trapping
 - Higher leakage current
- New technologies needed for the tracking detectors, especially for the inner layers!

BND School 2009

JRG

3D Detectors

- Decoupling of thickness and distance for charge collection: columnar electrodes are etched into the sensor and doped
 - Lower depletion voltage, lower trapping

- Dominating problem at very high radiation fluences: trapping charge carriers are trapped during drift through the silicon and are then lost for the readout
 - \rightarrow Measured signal decreases
- Fabrication of 3D detectors challenging modified designs under investigation

JRG

3D-DDTC

- 3D-DDTC (double-sided, double type column) detectors: Columns etched into the wafer from both sides, but not fully penetrating
 - Here: columns are connected to strips
 - Process much simpler than full 3D detectors
- Questions:
 - Which signal can be measured?
 - Is charge collection uniform?

BND School 2009

Test Beam July 2008

- Test beam: unique tool to study space-resolved charge collection in a realistic environment
- CERN SPS, H2 beamline, 225 GeV/c pions
- Track positions measured by the Silicon Beam Telescope (SiBT), resolution ≈ 4 µm (or even better)
- Readout with CMS prototype hardware, APV25 front-end (50 ns shaping time)

Michael Köhler

Signal Spectrum at 40V Bias

Sum of signal of the two strips closest to the track point of impact

 Tracks crossing the hollow columns: charge deposition only in silicon below the columns, thus lower signal

Signal Versus Bias

Landau MPV vs bias voltage (clusters of both strips closest to track)

- Maximum charge at 40 V: (3.5 ± 0.3) fC, (22 ± 2) ke⁻
 - Signal to noise ratio: ~ 31
 - Expected signal for 300 µm silicon: 3.7 fC, 23 ke⁻
 - → Measured signal in agreement with expected signal

BND School 2009

Charge Collection 2D

100

90

 $z^{(\mu_{III})}$

30

- Sensor divided into bins, mean of measured signal (not Landau MPV!) superimposed onto a unit cell
 - Growth of the depletion visible

5 V bias, signal of single strip

Signal still low, confined to region around readout electrode (not yet fully depleted)

- single strip
- Charge sharing between readout strips

40 V bias, signal of

40 V bias, signal sum of two neighbouring strips

Signal uniform (apart from the column positions)

2D Efficiency in 3D-DDTC

- Efficiency: ratio of hits over certain threshold and total hits
- Sensor area superimposed onto one uni cell and plotted six times next to each other
- Column structure clearly visible for threshold of 2 fC (here: signal of two strips adjacent to track position summed)
 - → Apart from column position: no regions with low efficiency visible
- Efficiency for summing signals of two strips:
 - at 2 fC: (98.53±0.03)%
 - at 1 fC: (99.80±0.01)%

Conclusion / Outlook

- Measurements with first batch of 3D-DDTC detectors are promising:
 - Full charge can be collected
 - Apart from column positions: signal and efficiency uniform

 Outlook: test beam with irradiated 3D and planar detectors performed in summer 2009 – data to be analysed

 \rightarrow Direct comparison of radiation hardness of 3D and planar sensors

10

Backup Slides

11

Michael Köhler 3D Silicon Strip Detectors

BND School 2009

2D Efficiency in 3D-STC

- Testbeam from 2007 with 3D-STC detectors [G. Pahn et al., IEEE TNS]
 - 2D efficiency map (40 V bias) with everything superimposed onto one unit cell and then plotted six times next to each other
 - Cut: deposied charge \geq 1 fC
- Expressed low field region in centre between strips visible

2D Efficiency, Different Thresholds

Again: Signal of two strips summed

13