A Large Ion Collider Experiment

Mikołaj Krzewicki

22-09-2009 BND Summerschool Rathen

Large Ion Collider Experiment

Mikołaj Krzewicki

22-09-2009 BND Summerschool Rathen

ALICE – who are we?

•1000 people from 109 institutes in 31 countries

ALICE – the collaboration

The obligatory LHC picture

(this time fully PC wrt the Other experiments)

QGP, the short story

What happens when you compress and heat matter to very high densities and temperatures?

Understand the properties (equation of state) of QGP.

QGP in the lab

→ We can (???) make QGP by colliding heavy nuclei with large energies

- → Experiments began in early '80s at Berkeley and presently at RHIC (Brookhaven)
- → In the near future cm energy >25x higher at CERN LHC

Observables

→ Flow – measure for anisotropic particle distribution

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{i}dp_{i}dy} \left\{ 1 + 2\sum_{n=1}^{\infty} v_{n}(p_{i}, y) \cos[n(\phi - \Psi_{R})] \right\}$$

Also others like hard probes, jet quenching

QCD questions

- → By studying the macroscopic properties (e.g. flow) gain insight in the underlying microscopic theory (QCD).
 - → Confinement

→ QCD mass generation (proton 100x heavier than constituent quarks)

ALICE design challenge

- →High multiplicity environment (up to 20k particles).
- →Particle tracking over a broad range of momenta (100MeV~100GeV). (we need N, phi, y, pt for flow)
- →Particle identification.
- →Secondary vertex finding (e.g. D0 decay)

ALICE detector

ALICE detector in real life

First measurements: cosmics

→ Cosmics used for alignment&calibration

→ Single cosmic particle

→ Particle showers caused by a cosmic interacting with matter above the detector

Relative ITS-TPC alignment

- → Tracking in the main tracking devices, the Inner Tracking System (silicone) and the TPC (gaschamber) is independent.
- → For good track matching and momentum resolution need to align.
- Why not do it iteratively (on the fly) using a Bayesian-like estimator?
- Kalman filter ideal for the job.

Performance with simulated cosmics

Example of the convergence of the fit with the number of updates.

TPC calibration

- Relative ITS-TPC alignment procedure is sensitive to TPC calibration (most notably drift velocity and trigger time offset t0).
- Drift velocity is time dependent(ambient pressure, temperature etc.).
- Calibration of TPC is done together with alignment inside the Kalman filter.
- → Kalman filter is fast we use it to monitor the TPC calibration on the fly during data taking using the full reco chain (prompt offline).

TPC drift velocity calibration

- Time dependence of the TPC drift velocity correction for the analyzed runs.
- Varies from run to run as expected due to (mostly) pressure changes
- Variations are ~2% means a few centimeters of apparent shift

TPC calibration check

- → Drift velocity ~ density ~ T/p.
- → Red curve is T/p from sensor data.
- Green curve is the velocity correction from tracks.
- → Gas composition not taken into account.

Backup

First "collision"

→ Beam 2 was circulated for a while in the night 11/12 September without full collimation, the halo collided with the material in the Inner Tracking System.

Flow

Underlying event

Observation (charged particles)