

Muon identification in the Atlas calorimeters

BND-school student talk

Mhàs

- ATLAS muon system has a gap at $\eta \sim 0$.
- Calorimeter has coverage there.
- Possibility to merge calorimeter muons with spectrometer muons to get better efficiency.
- Important for 4μ final states like H-> 4μ analysis.

Mhàs

- ATLAS muon system has a gap at $\eta \sim 0$.
- Calorimeter has coverage there.
- Possibility to merge calorimeter muons with spectrometer muons to get better efficiency.
- Important for 4μ final states like H-> 4μ analysis.

Hows

- Take a track from the inner detector.
- Extrapolate to different calorimeter surfaces and gather the corresponding cells (deposits).
- Two ways to tag a muon:
 - 1. Define cuts on deposits.
 - 2. Construct likelihood ratio.
- Impose isolation criteria: this kills many fakes.

Muon deposits

Cut-based tagging

First of all we should find a signal above some noise threshold. Veto on last layer that track passes through.

Cut-based tagging

- First of all we should find a signal above some noise threshold. Veto on last layer that track passes through.
- The deposits must not exceed predefined cuts.
 These are optimized per layer.

Cut-based tagging

- First of all we should find a signal above some noise threshold. Veto on last layer that track passes through.
- The deposits must not exceed predefined cuts.
 These are optimized per layer.
- Upper cuts are also imposed on the electromagnetic calorimeter to kill punch through electrons.

Other selection criteria

- Track quality is guaranteed by:
 - #SCT + pixel hits > 7,
 - Pt > 4 GeV
 - $d_0/\sigma(d_0)$ < 7 (w.r.t. primary vertex).
- Track isolation criteria:
 - $^{10}\log(p_t^{\rm iso}/p_t) < 0.7$
- Energy isolation:

 - $E_t^{\text{iso}} < 15 \,\text{GeV}$ $\log(E_t^{\text{iso}}/p_t) < 0.4$

Results on cosmics

- Minimal track selection to assure two hits with η information.
- Lower efficiency at large η is an acceptance effect.

Results on MC

- Tagging efficiency:
 - Does not involve efficiency loss due to track selection criteria.

Outlook & conclusions

- Calorimeter-based muon tagging can recover muons otherwise lost due to gaps in the muon system.
- Ongoing work:
 - Dress muon with quality flag (../Loose/Medium/ (Tight))
- When there's beam:
 - Will look for successful identifications.
 - Tune cuts, determine efficiency (although very physics channel dependent).