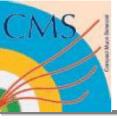


Search for the SM Higgs in the $H \rightarrow WW^* \rightarrow ev\mu v$ channel in CMS

Michele Selvaggi (UA)

Universiteit Antwerpen


- The experiment
 - · LHC
 - · CMS

· Standard Model Higgs

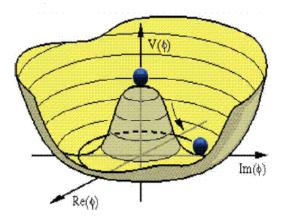
- Higgs boson
- Production and decay modes

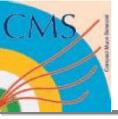
• $H \rightarrow WW^* \rightarrow ev\mu v \ channel$

- Signal topology
- Backgrounds
- Selections
 - · Cut-based
 - Multivariate
- Systematics

Higgs Scalar

Standard Model = non-Abelian SU(2) x U(1) gauge theory

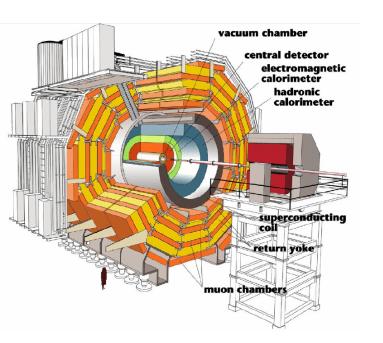

Local gauge invariance \rightarrow all fields a priori massless Massive fields terms (W,Z,e, μ ...) BREAK invariance

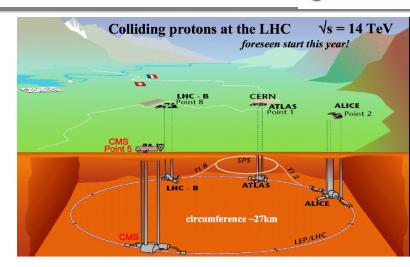

➤ Higgs Mechanism

Postulate the existence of a hidden sector, potential with SU(2) doublet Couples to known particles and gives them mass by acquiring v.e.v 2 complex components \rightarrow 4 d.o.f.

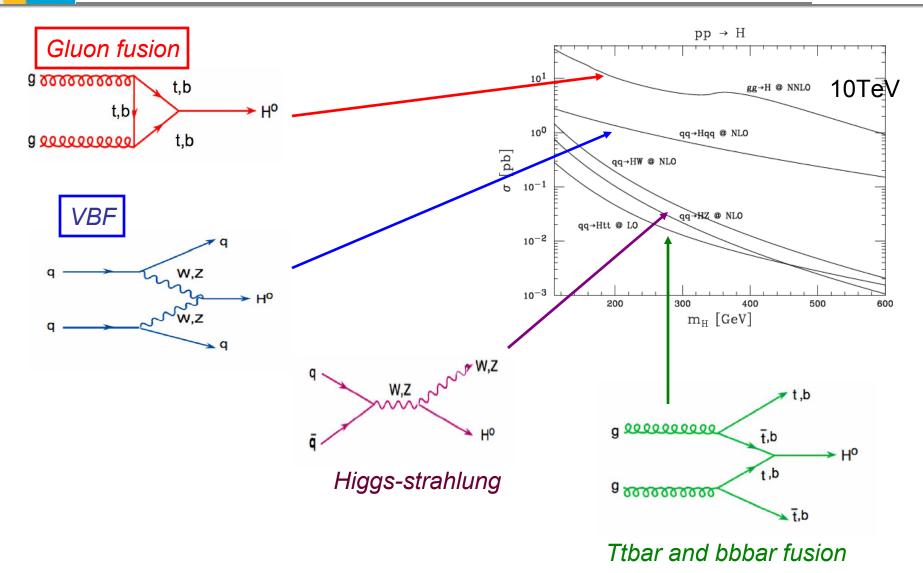
- > 3 d.o.f give masses to W[±], Z
- ➤ 1 d.o.f left scalar neutral particle H ,

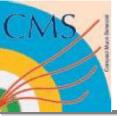
$m_{\rm H}$ free parameter



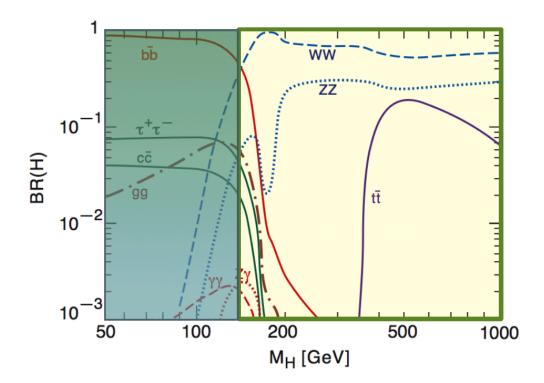


Design P-P collisions at s=14 (TeV)²
> 1st injection energy mid-november 09
> Progressively move to 3.5 TeV beam
> In 2010 → 5 TeV
> Later (??) → 7 TeV

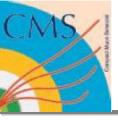



Design properties

- ➢ Good tracking system (SiStrip + pixels)
- ➤ ECAL (Scintilating PbWO₄ crystals)
- ➤HCAL (plastic scintilator)
- ➤Muons (DT, RPC+CSC)



Two main scenario


- *m_H* < 140 GeV
- H → bb (BR ~ 85 % but messy)
- H → tau tau (cleaner)

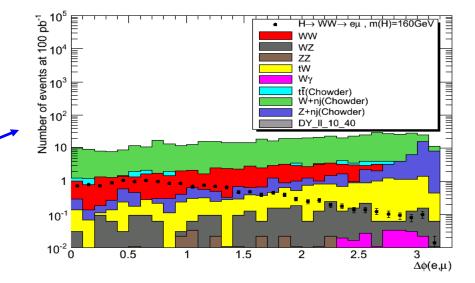
• *m_H* > 140 GeV

 $\sigma_{NLO}(gg) \sigma_{NLO}(VBF) BR(H \rightarrow WW)$ m, (GeV) (pb) (%) (pb) 13 120 37 5 140 28 49 4 160 22 3 90

 $H \rightarrow WW \rightarrow 2I2v$ (dominant but no mass peak)

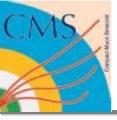
 $H \rightarrow ZZ \rightarrow 4I$ (clean mass reconstruction but lower BR)

 $H \rightarrow WW \rightarrow e v \mu v$



Signal Topology

- 2 oppositely charged leptons at central pseudorapidities
- no central jet activity (CJV)
- high Missing $\mathsf{E}_{_{\mathsf{T}}}$
- colinear emitted leptons (spin correlation)

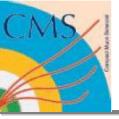

Backgrounds

- Dominants: WW, ttbar, W+jets
- also tW, Z+jets, WZ ..

$m_{\rm H}$ [G	eV] σ^{NLC}	^o [pb] BR(H	\rightarrow WW) σ^{NLO}	$\times BR(\mathbf{H} \to \mathbf{WW} \to \ell \nu \ell \nu) \text{ [pb]}$
120	40	0.31 0.	13	0.56
130	35	5.08 0.	28	1.06
140	31	.02 0.	48	1.58
150	27	.55 0.	68	1.98
160	24	.63 0.	89	2.34
170	22	2.18 0.	96	2.26
180	20	0.17 0.	93	1.99
190	18	3.43 0.	77	1.51
200	16	5.76 0.	73	1.30

Process	$WW \rightarrow \ell \ell' \nu \bar{\nu}$	tī	$W \rightarrow \ell \nu$	$DY \rightarrow \ell \ell$	Wt	ZZ	WZ	$W+\gamma$
σ^{NLO} [pb]	12.1	840.0	19518.3×3	1957.9×3	62.0	15.3	49.9	4.7

Cut-based analysis


<u>Strategy</u>

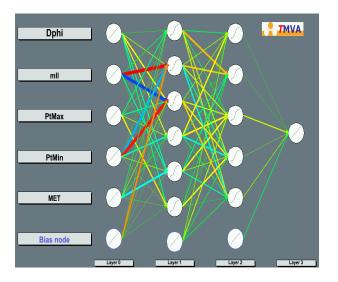
- candidate events have to pass trigger and common skim with at least two reconstructed leptons with p_{τ} > 10 GeV
- select exactly 2 leptons
 - leptons i and j should have opposite electric charge sign
 - $|\eta(\operatorname{lepton}_i)| \le 2.5$ and $|\eta(\operatorname{lepton}_j)| \le 2.5$
 - $p_{\mathrm{T}}(\mathrm{lepton}_i) \ge 10 \text{ GeV}$ and $p_{\mathrm{T}}(\mathrm{lepton}_j) \ge 10 \text{ GeV}$

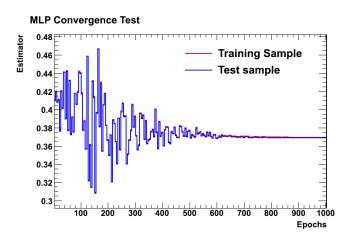
• Missing E_{τ} > 30 GeV

- *m*_{||} > 12 GeV
- Central Jet Veto

$m_{ m H}$	[GeV]	120	130	140	150	160	170	180	190	200
$\min E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	35	35	30	45	45	45	55	65	65
$\max E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	60	60	75	105	105	105	105	90	90
$\max \Delta \phi_{\ell\ell}$	[deg.]	90	90	70	70	70	65	65	60	65
$\max m_{\ell\ell}$	[GeV]	40	40	50	45	45	50	60	80	95
$\min p_{\mathrm{T}}^{\ell,\min}$	[GeV]	15	15	15	15	25	25	20	10	15
$\min p_{\mathrm{T}}^{\ell,\max}$	[GeV]	20	20	25	30	25	25	30	35	35
$\max p_{\mathrm{T}}^{\ell,\max}$	[GeV]	65	65	50	50	50	55	65	70	80
ϵ_S	$[\times 10^{-2}]$	1.0	1.0	1.3	0.9	1.2	1.3	1.3	0.8	0.9
N_S		5.4	10.2	20.8	18.7	28.5	30.0	25.9	12.1	11.7
N_B		77.7	77.7	101.7	46.3	30.6	38.0	51.7	42.5	47.9

NN analysis (1)


<u>Strategy</u>

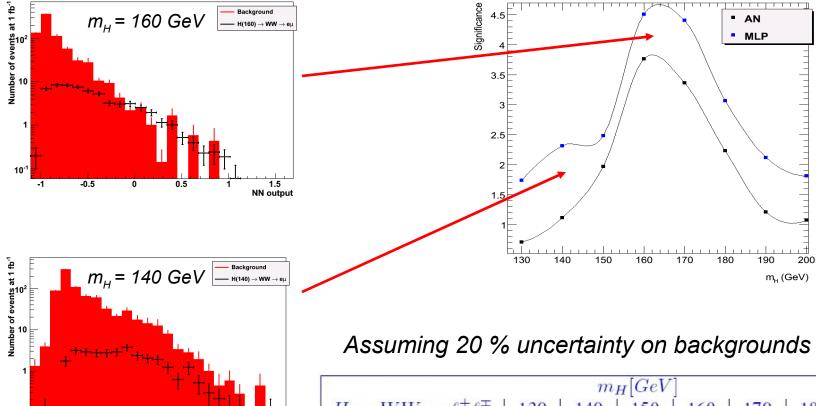

- For each mass 130 GeV < m_{H} < 200 GeV split signal and background tree into two samples with same amount of events:
- training sample
- test sample

→ Independent samples

Use 5 discrimination variables ($\Delta \varphi$, Missing E_T , Pt_{Min} , Pt_{Max} , m_{μ})

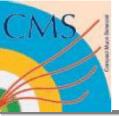
- •The structure of the MLP classifier is selected.
- Train the NN with training sample → fix the weights associated to nodes
- •Test sample to check that no overtraining has occurred
- •Let some MLP parameters vary to check if the configuration is (almost) stable (learning rate, decay rate, number of cycles, ordering input variables)

10⁻¹


-1

-0.8

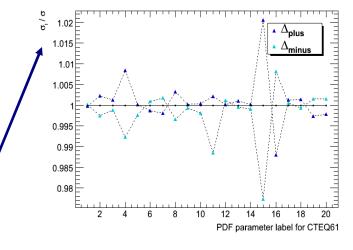
-0.6


NN analysis (2)

-0.4 -0.2 NN output

$m_H[GeV]$										
$H \to WW \to \ell^{\pm}\ell^{\mp}$	130	140	150	160	170	180	190	200		
N_S	14.7	10.5	18.2	23.6	31.8	21,6	19.9	17.4		
N_B	31.6	13.4	26.2	16.5	25.7	24.9	36.1	37.1		
$\frac{N_S}{\sqrt{N_B + 0.04N_B^2}}$	1.74	2.31	2.48	4.51	4.40	3.06	2.12	1.81		

PDF uncertainties


Crucial to study the propagation of PDF uncertainties to physical observables such as cross sections, selection efficiencies.

$$\sigma_{had} = \sum_{i,j} \int f_m(x_1, Q) f_p(x_2, Q) dx_1 dx_2 \sigma_{part}$$

Use reweighting

$$f_0(x,Q) \quad , \quad f_{k^{\pm}}(x,Q) \quad 1 \le k \le D$$
$$w_{k^{\pm}}^i = \frac{f_{k^{\pm}}(x_1^i, f_1^i, Q^i) f_{k^{\pm}}(x_2^i, f_2^i, Q^i)}{f_0(x_1^i, f_1^i, Q^i) f_0(x_2^i, f_2^i, Q^i)}$$

$$\sigma_k^{\pm} = \sum_{i=1}^{N_{events}} w_{k^{\pm}}^i$$

Calculate varied quantities and propagate

$$\Delta X^{\pm} = \sqrt{\sum_{k=1}^{D} \left[max(X_k^{\pm} - X_0, X_k^{\mp} - X_0, 0) \right]^2}$$

	PDF Uncertainties for backgrounds									
Sample	Cross Section (pb)	CTEQ 6.1	CTEQ 6mE	CTEQ 6.5	CTEQ 6.6					
tī	375	+ 5.1 %	+ 4.9 %	+ 5.1 %	+ 4.9 %					
11	515	- 5.0 %	- 4.6 %	- 4.4 %	- 4.6 %					
WW	7.4	+ 3.7 %	+ 3.6 %	+ 3.0 %	+ 3.2 %					
	7.4	- 4.7 %	- 4.1 %	- 3.1 %	- 3.2 %					
W + jets	40000	+ 4.1 %	+ 3.5 %	+ 3.4 %	+ 3.2 %					
1 - 100	10000	- 5.0 %	- 4.1 %	- 3.5 %	- 3.3 %					