

Universiteit Utrecht

Comparing energy loss phenomenology in a hot dense medium

Marta Verweij Utrecht University BND School 2009 19-09-2009

Heavy ion collision

Hard scattering

· Many independent hard scatterings.

BND	2009	Dresden

Hot dense medium

- What is the density of the medium?
- Energy density of the medium?
- Viscosity of the medium?
- Quark Gluon Plasma?
- Phase transition?
- Equation of state?

٠

٠

٠

Nuclear Modifaction Factor

$$R_{AA} = \frac{dN/dp_t|_{Au+Au}}{N_{coll}dN/dp_t|_{p+p}}$$

Yield per collision relative to p-p

- High p_t hadrons strongly suppressed.
- Direct photons scale with N_{coll}.
- A+A is superposition of p+p

BND 2009 Dresden

PHENIX, PRL 94, 232301

Energy loss in hot dense medium

- Parton traversing medium radiates gluons.
 - Medium characterized by: Transport coefficient

$$\hat{q} = \frac{\langle k_t^2 \rangle}{\lambda}$$

path length L

$\frac{dN}{dp_{t,hadr}} =$	$\frac{dN}{dp_{t, parton}}$	∘ P (∆ E)∘	$D(p_{t,hadr}'p_{t,parton})$
Measurement	Input parton	Energy loss	Fragmentation
	spectrum Known	Has to be	Factor Known
	LO pQCD	calculated	from e+e-

•

Energy loss models

- Multiple Soft Scattering Approximation: many interactions Input parameters: ghat and L
- Opacity Expansion: few hard interactions Input parameters: mu and lambda
- Both have an energy loss probability distribution.

TECHQM Brick Problem

Theory-Experiment Collaboration for Hot QCD Matter

- Brick: fixed length L and temperature T.
- Parton of energy E is shot through brick.
- Apple-to-apple comparison of:
 - Multiple Soft Scattering (ASW-BDMPS) Phys. Rev. D68 014008
 - Opacity expansion:
 - ASW-SH Phys.Rev.D68 014008
 - WHDG radiative Nucl. Phys. A784 426

Input parameters are calculated from T.

٠

Brick examples

 Single gluon emission spectrum Energy loss distribution

BND 2009 Dresden

Energy loss probability distribution

- · $P(\Delta E)$:
 - Continuous part
 - Discrete part
- Large differences
 between models under
 same medium conditions.

How much energy do we lose?

Single gluon spectrum
 Energy loss distribution

Large difference between BDMPS and OEs!

Suppression in a brick

 $\epsilon = \Delta E/E$

 Roughly factor 2 difference in qhat for same suppression.

R7=0.25	qhat (GeV^2/fm)	T (MeV)
BDMPS	2.13	400
ASW-OE	1.25	360
WHDG	1.58	330

Outgoing quark spectrum

$$\cdot x_{E} = 1 - \Delta E/E$$

- x_E = 0: Absorbed
 quarks
- x_E = 1: No energy
 loss
- Black-white scenario for BDMPS

"Realistic" Geometry

- Parton spectrum: LO pQCD T. Renk
- $\cdot\,$ Energy loss: BDMPS and WHDG

Fragmentation: KKP

"Realistic" Geometry

- · Parton spectrum: LO pQCD T. Renk
- $\cdot\,$ Energy loss: BDMPS and WHDG
 - Optical Glauber:
 - Density profile of medium
 - Collisional scaling: $\rho_{coll} = K_{coll} \times T_A T_B$
 - Participant scaling:

$$\rho_{WNS} = k_{WNS} \times (T_A (1 - e^{-T_B \sigma_{NN}}) + T_B (1 - e^{-T_A \sigma_{NN}}))$$

Fragmentation: KKP

Di-hadron suppression

 I_{AA}: suppression of away side (associate hadrons)

 All models can always be fitted to R_{AA}.

- All models can always be fitted to R_{AA}.
 - Using constraint obtained from R_{AA} fit, models do not "predict" I_{AA} measurement.

•

- All models can always be fitted to R_{AA}.
- Using constraint obtained from R_{AA} fit, models do not "predict" I_{AA} measurement.

0.08

0.05

0.04

0.03

0.02

10

10

All pairs

BDMPS

fn

SSOC

L_{kte} [fm]

L [fm]

riggers

ssociates

iout bia

Conclusion

- All models fit RAA
- IAA can distinguish between models
- · Outlook
 - Typical parton energy at RHIC: 10 GeV
 - At LHC: 100 GeV -> absorption rate lower

Backup

BDMPS vs WHDG (2)

Scattered background: medium density for best fits collisional scaling in static medium.

٠

Single Gluon Spectra

· BDMPS:

 $\omega \frac{dI}{d\omega} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2\operatorname{Re} \int_{\xi_0}^{\infty} dy_l \int_{y_l}^{\infty} d\bar{y}_l \int d\mathbf{u} \int_{0}^{\chi\omega} d\mathbf{k}_{\perp} e^{-i\mathbf{k}_{\perp}\cdot\mathbf{u}} e^{-\frac{1}{2}\int_{\bar{y}_l}^{\infty} d\xi \, n(\xi) \, \sigma(\mathbf{u})} \\ \times \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{\mathbf{y}=0}^{\mathbf{u}=\mathbf{r}(\bar{y}_l)} \mathcal{D}\mathbf{r} \exp\left[i \int_{y_l}^{\bar{y}_l} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi)\sigma(\mathbf{r})}{i\omega}\right)\right] \\ \cdot \text{ ASW-SH:}$

$$\omega \frac{dI}{d\omega} = \frac{4\alpha_s C_R}{\pi} (n_0 L) \gamma \int_0^\infty \tilde{q} d\tilde{q} \left[\frac{\tilde{q}^2 - \sin \tilde{q}^2}{\tilde{q}^4} \right] \times \left(\frac{1}{\gamma + \tilde{q}^2} - \frac{1}{\sqrt{(\kappa^2 + \tilde{q}^2 + \gamma^2)^2 - 4\kappa^2 \tilde{q}^2}} \right)$$

• WHDG:

$$x\frac{dN_g}{dx} = \frac{C_R\alpha_s}{\pi}\frac{L}{\lambda}\int_0^{q_{\max}^2} \frac{2q^2\mu^2 dq^2}{\left(4xE\hbar c/L\right)^2 + \left(q^2 + \beta^2\right)^2}$$

$$\times \int_{0}^{k_{\max}^{2}} \frac{dk^{2}}{k^{2} + \beta^{2}} \frac{k^{2} \left(k^{2} - q^{2} + \mu^{2}\right) - \beta^{2} \left(k^{2} - q^{2} - \mu^{2}\right)}{\left((k - q)^{2} + \mu^{2}\right)^{3/2} \left((k + q)^{2} + \mu^{2}\right)^{3/2}}$$