
An introduction to cosmology

Michel Tytgat
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Aim:

• What is the universe made of ?

• How do we know ?
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Never underestimate the pleasure people have when they hear some-

thing they already know

E. Fermi
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Chapter One

The Cosmological Principle and Basic Equations
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The Cosmological Principle

States that, on large scales, the universe is homogeneous and isotropic, an
old and bold idea that goes back to Copernic.

The cosmological principle is also sometime called the mediocrity principle...

Based on Three Observational Facts

1. The large scale distribution of matter

2. The isotropy of cosmological signals, most notably the cosmic microwave
background radiation

3. The recession of distant galaxies
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Fact # 1. The large scale distribution of matter

N.B.: Light-year 1ly ≈ 1016m

Parsec 1pc ≈ 3.3ly

The universe is clumpy at first sight.

Z there are planets, stars, galaxies, clusters of galaxies,...

However the average mass density ρ on a given scale decreases as the

scale increases.
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Furhtermore, the largest structures seen are clusters of clusters or

superclusters, on scale ∼ 100 Mpc.

Beyond this, the universe is essentially homogeneous (no more struc-

ture seen and ρ → constant).



This is seen in large scales galaxy surveys. This one is from the 2dF collabora-

tion (http://www.mso.anu.edu.au/2dFGRS/), a survey of the position of 382,323

galaxies, up to a distance of ∼ 1 Gpc.
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This figure provides more quantitative informations (Peacock and Dodds 1994,

MNRAS, 267, 1020).

It shows you the matter density contrast ∆ = δρ/ρ, where ρ is the large scale average

mass density, as a function of the radius of some averaging fonction (top hat).

The trend is clear.
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Fact # 2. Isotropy of cosmological signals

Signals that are extra-galactic origin show remarkable isotropy.

This is an observation of the distribution of galaxies on the sky (the APM galaxy
survey, about 2 106 galaxies). The QSO (quasars,...) distribution is similar.

9



Distribution of Gamma Ray Bursts
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The most remarkable is the nearly perfectly isotropic Cosmic Microwave Background Radiation
(CMBR) with an almost perfect black body spectrum, with temperature T = 2.725 ± 0.002K (peak
frequency 160 GHz, wavelength 1.9 mm). Discovered in 1965 by Penzias and Wilson but existence
anticipated by Gamow as early as 1948.

This spectrum was obtained by the COBE satellite (FIRAS, 1994) together with a black body curve
at T=2.725 K. The error flags have been enlarged by a factor of 400 so that you can actually see
them.
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First departure from isotropy starts with a dipole, with ∆T ∼ 3.3 mK. This is signature
of the Sun’s motion with respect to the reference frame of the CMB. The inferred
velocity is v⊙ ≈ 370 km/s, corresponding to β = v/c ∼ 10−3.

The dipole effect has been first observed in 1969 (Charles H. Lineweaver, astro-
ph/9609034 for a review).

True anisotropies arise at a much smaller scale, ∆T/T ∼ 10−5. We will discus CMB
anisotropies in the 4t lecture.
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By the way

Isotropy and homogeneity are independent concepts.

However isotropy around any two points implies homogeneity.

14



Fact # 3. Recession of distant galaxies

What Hubble did:

He estimated the distance ′′d ′′ to far away galaxies using cepheids (a class of variable
stars). Determining distances in cosmology was, and still is, a tricky business.

He also measured their spectrum (that was, and still is, relatively easy)

He observed systematic deviations between emitted and observed wavelengths

λo − λe

λe

= z z = Redshift
and interpreted this as a Doppler effect

λo − λe

λe

= z ≈ v

c
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The historical Hubble diagram (1929).
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He got (1929)

v = H0d Hubble's law

with

H0 ≈ 500km · s−1 · Mpc−1 Hubble's onstant
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H0 = 64km s−1Mpc−1, which is closed to the currently prefered value.

Here we define H0 = h100km s−1Mpc−1 and adopt h ≈ 0.7 ≈ 2/3,

h2 ≈ 1/2.

18



For a list of published values of the Hubble constant see

http://www.cfa.harvard.edu/ huchra/hubble.plot.dat



Simplicio:

“The galaxies are flying away from us. We are at the center of the Universe!”

Sagredo:

“Or it means that the universe is uniform and galaxies are moving away from each
others...”

Salviati:

“Right, but since Einstein we say that the universe is expanding!”
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You may check that the Hubble law is the only solution consistent with

an homogoneous and isotropic universe (ie v ∝ d2 does not work).

Conversely, we make take the Hubble law as a further argument

supporting the cosmological principle.
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Hubble and the age of the universe

The Hubble constant has the dimension of 1/time. In particular

1/H0 = h−19.78 · 109 yr

If we use the present value, h ≈ 2/3, we get a timescale of 15 · 109

years, older than the oldest known objects (globular clusters, with

tGC ∼ 12 · 109 years.

In 1929, the timescale was closer to 2 · 109 years, younger than the

age of the solar system.
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If v was constant (on a given wordline), H−1 would indeed be the

“age of the universe”, i.e. the time elapsed since the beginning of

expansion:

v = onst = _a(t)x → a(t) ∝ t → H(t) = _a/a = 1/t

Since gravity is attractive, the galaxies should slow down.

We should expect that the universe is younger than 1/H0.
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Basic equations

A. Kinematics

We take space (slicing) as homogeneous & isotropic.

Then there is a universal t time coordinate (“the age of the universe” = time for
observers that see space slices as homogeneous & isotropic)

Galaxies are taken to be at rest (no peculiar velocity to first approximation) with
respect to comoving coordinates (χ, θ, φ).

Their collective motion is due to the expansion of space. It is encompassed by the

scale factor a(t). We take atoday = a0 = 1.
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Physical distance dP

Actual distance from to e.g. a galaxy at a given moment of time. (For other
distances, see later.)

dP(t) = a(t)χ

Since we took a0 = 1, comoving distances are physical distances today.

Recession velocity:

v = _dP = _aχ =

_a
a

dP

≡ HdP

This relation is called the Hubble law and it is exact (ie not an approximation).
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Exercise 1.

Show that the Hubble law is consistent with spatial isotropy and homogeneity.

Exercise 2.

How could you measure the distance dP?

Exercise 3.

What is the velocity of an object at cosmological distance dP = 1/H? Is this a
problem?
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The Robertson-Walker metrics

Geometrically space is described by its metric Z (infinitesimal) distance be-
tween two points.

Homogeneous & isotropic space : only three such geometries (but many more
topologies) in any dimensions.

Sphere, plane and hyperbolic plane = surfaces of constant curvature K ∝ 1/R2.

d~x2 = dχ2 + S2
K(χ)(dθ2 + sin2 θdφ2)

Flat space: K = 0; R → ∞

SK(χ) = χ

α + β + γ = π
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Spherical space: K > 0 = 1/R2

SK(χ) =
1√
K

sin√Kχ

α + β + γ > π

Hyperbolic space: K < 0 = −1/R2

SK(χ) =
1√
−K

sinh√−Kχ

α + β + γ < π



Finally, a spacetime interval in an expanding universe is given by (Robertson &
Walker):

ds2 = dt2 − a(t)2d~x2

As a simple application, consider a photon of wavelength λe emitted by galaxy A
and observed by galaxy O with wavelength λo. We can show that λ ∝ a(t).

The comoving distance between O and A is χ = constant. Photons travel on
light-cones, ds2 = 0 or

dχ2 = dt2/a(t)2

Thus

χgalaxy =

∫ to

te

dt

a(t)
=

∫ to+To

te+Te

dt

a(t)

where the period T = λ (remember c = 1). You can use Te,o ≪ te,o to show that
(exercise)

λo

λe

=
a(to)

a(te)
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Redshift revisited

The ratio
λo − λe

λe

= z

is what we called the redshift factor z.

If we normalize a(t0) = 1, we thus have

a(te) =
1

1 + z

The redshift is a measure of the scale of the universe at the time of emission.

30



B. Dynamics

The universe is considered to be filled by an homogeneous & isotropic fluid = ideal
fluid.

An ideal fluid is described by

ρ(t) its energy density and p(t) its pressure

Depending on the context, the cosmic fluid is made of elementary particles, massive
(non-relativistic = NR) or massless (or relativistic, or radiation = R) or whole
galaxies (treated as point-like objects). More strange fluids may be necessary (i.e.
a cosmological constant)

For instance, for a NR objects: ρ ≈ mc2n with n the density and p ≈ 0.
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Consider a spherical region of the universe, of mass M = 4/3πρd3, an a test galaxy
of mass m.

If you forget about the rest of the universe, the force felt by the test galaxy is

m�d = −
GMm

d2
= −

4πG

3c2
mρd

where G is Newton’s constant.

(In high energy units G = 1/M2Plank with MPlank = 1.2 · 1019 GeV)
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Drop the m (principle of equivalence), drop the χ in d = a(t)χ. You get

The Raychaudhuri equation �a
a

= −
4πG

3c2
ρ

This is the correct equation for non-relativistic matter.

If pressure ( = kinetic energy density) is important, then�a
a

= −
4πG

3c2
(ρ + 3p)

The effective gravitational mass-energy is thus ρ + 3p∗.

Pressure, if positive, is as attractive as matter.

∗This is a relativistic effect, so you need the Einstein equations to derive this result.
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Important:

If ρ+3p > 0 (normal matter or radiation) the expansion of the universe is decelerating

(slowing down).



fluid energy conservation:

The expansion of FLRW universe is adiabatic (no entropy creation).

Then an element of fluid of volume V must satisfy

dE ≡ ρdV + Vdρ = −pdV with V ∝ a3

Then

_ρ = −3H(ρ + p)

Three extreme types of fluid are usually envisioned:

Dust, non-relativistic matter:
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p = 0 −→ ρ ∝ a−3



Radiation, relativistic matter:

p =
ρ

3
−→ ρ ∝ a−4

Cosmological constant, dark energy:

p = −ρ −→ ρ = onst.
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The Friedmann equation

Combining the Raychaudhuri equation and energy conservation, you

get (up to an integration constant, exercise) the most important

equation of cosmology (I set c = 1)

H2 =
8πG

3
ρ −

K

a2

To match the integration constant with the curvature K , you unfor-

tunately need General Relativity.
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C. Cosmological Solutions

What is Friedmann good for?

1. The Friedmann equation relates three important observable quantities: the
Hubble parameter H, the total energy density ρ and the curvature K.

Dividing the LHS and the RHS of Friedmann by H2 gives the most important
equation of cosmology ;-)

1 = Ω −
K

a2H2

where

Ω =
ρ

ρc

with ρc is the critical density defined as

ρc =
3H2

8πG
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Today

ρc0 =
3H2

0

8πG
= 1.88h2 × 10−29g · cm−3

= 1.1 h2 10 GeV · m−3

= 2.775h2 1011 M⊙ · Mpc−3

= (3 × 10−3 eV)4 h2

A universe with Ω > 1 has a spherical geometry, Ω < 1 is hyperbolic while Ω = 1 is
flat. Note that only the latter has Ω = constant (more on this in lecture 4).
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2. Multiplying Friedmann by a2 and dividing by 2 gives the most

important equation of cosmology (no kidding)
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K = 0 solutions, also valid for Early Universe

Matter

a(t) =

(

t

t0

)2/3

H =
2

3t
DH =

2

H

Radiation

a(t) =

(

t

t0

)1/2

H =
1

2t
DH =

1

H

Λ

a(t) = a(ti) exp(H(t−ti)) H = onst DH → ∞
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The solution a(t) ∝ t corresponding to an empty, non-decelerating, universe gives
a very simple expression for the age of the universe (time lapsed since a = 0)

t0 =
1

H0

≈ 15 · 109 yr

A cosmic fluid may decelerate (attractive matter) or accelerate (Λ) the expansion,
giving respectively a younger or older universe. For instance

a ∝ t2/3 → H =
2

3t
→ t0 =

2

3H0

≈ 10 · 109 yr

for a flat matter dominated universe.

This is less than the age of globular clusters. The universe can not be flat, matter

dominated.
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Look-back time for some relevant a(t) solutions
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From bottom to top: flat matter dominated (blue), empty (black), 30 % matter + 70 % Λ (red),

10 % matter + 90 % Λ (yellow)
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The effect of a cosmological constant (flat universe)
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A cosmological constant has been used ever since its introduction by Einstein to solve an “age

crisis” of the universe
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Curvature has also an impact.
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Cosmological calculator:

http://www.astro.ucla.edu/ wright/CosmoCalc.html
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Chapter two

Mapping the Cosmological espansion and the Early Universe
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Mapping the cosmological expansion

Luminous distance

Definition: the absolute luminosity L of an object is the energy it radiates per unit of time. This
energy could be in a range of frequencies or integrated over the whole spectrum of radiation. We
consider only the latter here. Its apparent luminosity l is the energy received per unit area per
unit of time.

Suppose you know the absolute luminosity L of a distant object (galaxy, quasar,...) and measure its
apparent luminosity F equal to the flux of energy per steradian. In Euclidean space

F =
L

4πd2
L

We can thus define the luminous distance by

dL =

(

L

4πF

)
1

2

This definition applies to an expanding universe, provided we understand how the apparent luminosity

is affected by expansion.
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Using comoving distance, in a flat, static universe the flux observed today is

F =
L

4πχ2

What about a curved, expanding universe?

In curved space we must simply replace χ by Sk(χ). Furthermore, because of expansion the energy

of a photon is redshifted by a factor of a = 1/(1+ z) between emission and reception. Last, we must
take into account the fact that the rate of photon reception is smaller than the rate of emission by
a factor of a = 1/(1 + z).

Altogether, the flux of energy received is

F =
La2

4πS2
k
(χ)

This motivates us to define the luminous distance as

dL =
Sk(χ)

a
= (1 + z)Sk(χ)

Note that, in a flat universe, this is a factor of 1/a larger than the physical distance today

dL =
dP

a
Objects look fainter, i.e. further away, because of expansion.
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Angular diameter distance

As an alternative definition of distance, suppose we know the physical size D of an object. In
Euclidean space, the apparent diameter δ is

δ =
D

dA

if the object is at distance dA. Thus we define

dA =
D

δ

and asked how D and δ are affected in an expanding universe.

According to the FRW metric, the angle sustained by an object of physical size D at comoving
distance χ is

δ =
D

aSk(χ)
which gives

dA = aSk(χ) =
Sk(χ)

1 + z
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Note that in a flat universe, the angular distance is smaller than the physical distance by a factor
of a,

dA = adP



Horizon

The angular diameter distance has interesting properties, related to the existence of a particle
horizon.

Consider for instance a flat matter dominated universe. The comoving distance to a an object at
redshift χ is

χ =

∫ t0

t(a)

dt

a(t)
=

∫ 1

a

da

a2H
=

2

H0

[

1 −
1√

1 + z

]

The comoving distance is χ = z/H0 for small z but then asymptots to 2/H0 for large z, which is the
size of the particle horizon today = largest distance that could have been travelled by a particle
moving at the speed of light. (More on this in the 4th lecture).

Consequently the angular distance increases at small redshift, as expected, but decrease around
z ∼ 1: the apparent diameter of a category of objects of fixed physical size increases with distance!

The effect of curvature is also important. In a curved universe,

dA(z) =
1

(1 + z)H0

√

|Ωk|

{ sinh(
√

ΩkH0χ) Ωk > 1sin(
√

−ΩkH0χ) Ωk < 1
(1)

where Ωk = 1 − Ω = −K/H2
0
. An object of fixed size, at fixed comoving distance, appears larger in a

closed universe than in a flat universe. The converse holds in an open universe.
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The Hubble law and the luminosity distance-redshift relation

We saw that luminous, physical and angular distance are equal at small z. In this section we extend
the Hubble law to second order in z for the luminous distance.

To express dL as a function of the redshift z we need to eliminate the reference to χ. This is easy
if we can solve the Friedmann equation for a(t), as we did in the figure in the preceding section.

Otherwise, if we consider small z, we can derive an approximate relation by expanding a(t) near
t = t0. This approach does not rest on theoretical prejudices (ie the validity of Einstein equations)
but requires the introduction of a priori arbitrary parameters. We consider the expansion to second
order in z only for convinience.

We need χ as a function of time t. From the geodesic motion of a photon, we have∫ t0

t1

dt

a(t)
= χ (2)

Expand a(t) in the vicinity of t0:

a(t) = a(t0) + _a(t0)(t − t0) +
1

2

�a(t0)(t − t0)
2 + . . .

= 1 + H0(t − t0) −
1

2
q0H

2
0(t − t0)

2 + . . . (3)

(4)

where H0 = _a/a today and q0 = −�a0/H0 is called the deceleration parameter.
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Inserting the expansion of a(t) in the lhs of Eq(2), we get

χ = (t0 − t1) +
1

2
H0(t0 − t1)

2 + . . .

In a static universe, it takes a time t0−t1 for light to travel a physical distance χ (remember comoving
distance = physical distance today). This takes less time in an expanding universe since the source
was closer, a(t1)χ < χ.

Finally we need to relate t0 − t1 and z. As

1 + z =
a0

a1

=
1

a(t1)

we have

z = H0(t0 − t1) +

(

1 +
q0

2

)

H2
0(t0 − t1)

2 + . . .

or

t0 − t1 = H−1
0

(

z − (1 + q0/2)z2 + . . .
)

Now, if we limit the expansion to second order in z, you can verify that the correction due to spatial
curvature is to next order. That is, we can take

χ ≈ Sk(χ)
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Putting everything together, we find that the luminous distance to the source is related to redshift
by

dLH0 = z +
1

2
(1 − q0)

2z2 + . . .

Note that there is deviation from the Hubble law even in a universe with vanishing deceleration
(Milne universe). This is both because of the existence of an horizon and of the diming of light by
expansion.



The Hubble diagram below compares three notion of distance we have just discussed in the case of
a flat, matter dominated universe. Notice the bending downward of the angular diameter distance.
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The Hubble diagrams below compare how various distances for various cosmological models.
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Magnitude-distance relation

Magnitude is one of these historical units, based on the approximately logarithmic sensibility of the
eye, which make astronomy such a delight. The use of parsecs instead of light-years is another
instance.

The relation between magnitude and to luminous distance is given by

m = M + 5log10

(

dL

10pc

)

+ K(z)

where M is the magnitude of an object as seen from a distance of 10pc. The K-correction takes
into account the fact that instruments are sensitive not to the total luminosity but to some range
of frequencies and that frequencies are shifting because of expansion.
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Cosmological Constant

From observations distant type Ia Supernovae. Here the historical data.
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From observations distant type Ia Supernovae. Here a compilation by Ned Wright
(http://www.astro.ucla.edu/ wright/cosmolog.htm)
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Consider a universe with matter and a cosmological constant.

Using the Raychaudhuri equation�a
a

= −
4πG

3
(ρ + 3p) = −

1

2
H2

(

ρM

ρc

+
ρΛ

ρc

− 3
ρΛ

ρc

)

we get for the deceleration parameter today

q0 = −

�a
aH2

∣

∣

∣

∣

t0

=
1

2
(ΩM − 2ΩΛ)
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The early universe

The CMBR has a spectrum of a black body with temperature T ≈ 2.72 K. The
energy density of this gas of photons is given by

ρ = 2

∫
dk3

(2π)3

ω(k)exp(ω(k)/T) − 1
=

π2

15
T 4

with ω(k) = k (in high energy units). One may also estimate the number density
of photons

n =
2ζ(3)

π2
T 3 ≈ 422 cm−3 today

and the corresponding fraction of the critical energy density

Ωγ0 = 2.48 h−2 10−5

We have seen that ρ ∝ a−4 for a gas of relativistic particles. Thus

T ∝ 1

a
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A remarkable property of the isotropic expansion of the universe is that it preserves
the blackbody nature of the photon spectrum. Since both ω ∝ 1/a and T ∝ a

1exp(ω/T) − 1
=

1exp(ω0/T0) − 1

Thus, the existence of the blackbody CMB points unambigously to a phase when

the universe was hot, presumably in thermal equilibrium when light and matter
interacted strongly (ie frequently).

As T ∝ a, the temperature was very high at early times, eventually higher than the
mass of the known (and unknown) particles and the expansion was dominated by
radiation.

Let g⋆ be the effective number of relativistic degrees of freedom at T

ρ = g⋆

π2

30
T 4
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with

g⋆ =
∑i=bosonsgi +

7

8

∑i=fermionsgi

(the factor of 7/8 comes from Fermi-Dirac vs Bose-Einstein statistics).

Then the expansion rate takes a very simple form in the radiation dominated era
(ie early universe)

H ≈ 1.66g
1/2
⋆

T 2

Mpl



When was the expansion dominated by radiation?

The universe today contains various fluids

Ω = ΩMatter+ΩRadiation+ΩΛ+. . .

Then

ΩR

ΩM

=
ΩR,0

ΩM,0

(1 + z) → 1 + zEq. =
ΩM,0

ΩR,0

ΩΛ

ΩM

=
ΩΛ,0

ΩM,0

1

(1 + z)3
→ 1 + zEq. =

(

ΩΛ,0

ΩM,0

)1/3

Estimates of the energy density of matter gives ΩM,0 ≈ 0.3 so, tentatively, we take
zEQ ≈ 104. Correspondingly

TEQ = T0(1 + zEQ) = 104K ∼ 1eV
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For the cosmological constant, we may take ΩΛ ≈ 0.7. Hence

ΩM

ΩΛ
=

ΩM,0

ΩΛ,0
(1 + z)3 ≈ 0.3

0.7
(1 + z)3 ≈ 1 at equality

implies matter energy and dark energy equality at z ≈ 0.33, corre-

sponding to t ≈ 1010 yrs.
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Primordial Nucleosynthesis

The early phase of the universe has presumably left many remnants, one of which
is the CMBR.

Another important pillar of the standard model of cosmology is primordial nucle-
osynthesis of the light elements, ie helium (4He) essentially but also tiny bits of
deuterium (2H) and Lithium 7Li.

The temperatures of interest are in the MeV range, characteristics of nuclear pro-
cesses.

We take the universe to be composed of protons and neutrons, which are non-

relativistic at T ∼ 1MeV, as well as electrons, photons and neutrinos, all relativistic

particles.
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Step 1

In thermodynamic equilibrium, the abundances of neutrons (n) and protons (p)
satisfy

n

p
= e−Q/T

with

Q = mn − mp = 1.293MeV

Hence at high temperatures T ∼
> 1MeV, n ≈ p, as expected.

(To get this equation, we need to assume that there are a similar number of neutrinos and antineu-

trinos. More on this later)
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Thermo equilibrium is mechanical equilibrium plus chemical equilibrium. The latter
is maintained if processes like

n + νe ↔ p + e

or

n + �e ↔ p + �νe

are occuring “rapidly”.

The rate Γ of these processes is controlled by (thermally averaged) weak cross-
sections

〈σ|v|〉 ∼ G2
FT

2

where GF ≈ 10−5GeV−2 (you can guess this purely on dimensional grounds) and the
density of target particles n ∼ T 3 or

Γ ∼ G2
FT

5
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What do we mean by “rapid” interactions?

When we consider a specific processus, there are essentially two relevant time scales.
The first is the interaction timescale, τI = Γ−1. The other is the age of the universe
at the temperature T , t ∼ H−1.

Intuitively, a processus is in equilibrium if τI ∼
< t or

Γ ∼
> H

Otherwise, it is said to be out-of-equilibrium.

Concretely, the weak processes to which the neutrons and protons take part become
inefficient when

Γ ∼ H → G2
FT

5 ∼ g
1/2
⋆

T 2

Mpl

which occurs at (exercise)

Tfreeze out ∼ 1MeV

(more precise calculations yield TFO ≈ 0.8 MeV). The age of the universe is t ≈ 1s.
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Step 2

At TFO

n

p
= e−Q/TFO ≈ 1/5

If all the neutrons were to be incorporated in helium nuclei, the mass fraction of
4He (how much baryon mass is in helium) would be

XHe =
4nHe

n + p
=

2n

n + p
≈ 1

3

For a first estimate, this is not too bad since the “observed” mass fraction of
primordial He is close to 25%.

The explanation for the difference is interesting and instructive.
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Step 3

Some processes relevant for the formation of 4He are

n + p ↔ D + γ

followed by

D + D ↔ He + γ

At T ∼ 1MeV, these processes are fast compared to the expansion rate = thermo-
dynamic equilibrium.

Using the equilibrium abundance of a non-relativistic particle or nuclei of mass m
and chemical potential µ

nEq = g

(

mT

2π

)3/2

e−(m−µ)/T

and the condition on the chemical potential at equilibrium (chemistry 101)

µn + µp = µD
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for instance, we can derive the equilibrium mass fraction of Deuterium

X2 ∼ ηeB2/T

where η = nb/nγ is the ratio of the baryon to photon densities and B2 = 2.22MeV is
the binding energy of deuterium.

For Helium, we would get

X4 ∼ η2eB4/T

with B4 = 28.3MeV while a nucleus made of A nucleons we would have

XA ∼ ηA−1eBA/T

These so-called Saha equations tell us that there is a competition between energy
(the exponential factor) and entropy (the number of photons).

The key point is that η = nb/nγ is a small number. For galaxy abundances only we

may estimate that there is less than one nucleon per cubic meter, while there are

of the order of 108 photons per m3 in the CMB.



From the Saha equations we get that, at TFO ∼ 1MeV

X2 ≈ 10−12 X4 ≈ 10−23 X12 ≈ 10−108

Because there are many photons per baryon, nucleosynthesis starts around t ≈ 1
minutes (the famous “first three minutes”):
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Since the time scale between freeze-out of weak interactions and the real beginning
of nucleosynthesis is O(minutes), similar to the half-lifetime of the neutron τn ≈
886s, the abundance of neutrons changes substantially

n

p
≈ 1

7
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which gives (most of the neutrons go into Helium nuclei)

X4 ≈ 0.25

Sonnez trompettes!

The predictions of primordial nucleosynthesis are sensitive indicator for

1. The baryon-to-photon ratio. The larger η the ...... X4 (fill the blanks).

2. The number of degrees of freedom at the time of freeze-out (Peebles 1966).
The larger g⋆, the .... H and the ..... X4 (fill the blanks)
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1994: observation of primordial deuterium abundance in Lyman-α absorption lines

(redshift z ≈ 2.7)
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From the comparison of observations to prediction of primordial nucleosynthesis,
we may infer that

η = (6.0 ± 0.15) · 10−10

or

Ωbh
2 = 0.020 ± 0.005

(Particle Data Book)

In lecture 4 we will get another measure of the baryon content of the universe.

In the meantime we may notice that Ωb ≈ 0.04 < ΩM...

Speaking of neutrinos, primordial nucleosynthesis puts the following limit on the
number of light (m ∼

< MeV) neutrino families

1.8 < Nν < 4.5 (PDG)
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Neutrino families from e+e− collisions
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Chapter Three

Dark and Ordinary matters
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Dark Matter

Most of matter in the universe is not visible and the evidences that this invisible
matter is not made of baryons are accumulating.

There are essentially three evidences. With increasing level of confidence, they are

1. The rotation curves of spiral galaxies.

2. The dynamics of clusters of galaxies

3. The formation of large scale structures (more on this in section 4).

Good reviews are

TASI lectures on Dark Matter, Keith Olive, astro-ph/0301505

Particle dark matter: Evidence, candidates and constraints, by Bertone, Hooper & Silk,hep-ph/0404175
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To many, the most convincing evidence for the existence of dark matter is the
so-called “Bullet cluster”
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X-ray image showing hot baryonic

gas (second in mass)

Composite image showing the

visible galaxies (least important

in mass) and the newtonian

potential reconstructed from

lensing (most important = dark

matter)
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Observations concur to indicate that Ωdm ≈ 0.26, about five time the energy density
in baryons...

Astrophysical objects, like MACHOS (massive compact halo objects) are essentially
excluded.

Many candidates for dark matter are new elementary particles, the most acclaimed
being the neutralino the lightest stable supersymmetric particle (LSP).

Another particle physics possibility is the axion, the particle of the field introduced
to solve the strong CP problem.

We will limit ourself to the first possibility and will discuss a simple and elegant
scenario, based on the existence of massive, weakly interacting particles or WIMPs.
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Hot or Cold dark matter?

We will briefly come back to this issue in the last lecture but let us mention here a
distinction between

HOT DARK MATTER (HDM) and COLD DARK MATTER (CDM)

The distinction has to do with their mean free path at the time of matter-radiation
equality (first time when structures may start forming).

The latter have negligible mean free path (small momentum) and may form struc-
tures on all scales while the former introduce a cut-off in the spectrum of early
structures. This is strongly disfavoured by datas.

WIMPs are CDM candidates.

86



The Weakly Interacting Massive Particle Paradigm

Consider a massive, stable, neutral and weakly interacting particle X (assumption
1). The abundance of X is controlled by its annihilation into Standard Model
(assumption 2) particles.

X + X ↔ y + z

The annihilation rate Γ is given by

Γ = 〈σ|v|〉nX

where

nX = gX

(

mXT

2π

)3/2

e−mX/T

Thus we assume that the X has no conserved charge (assumption 3) or at least no
charge asymmetry. This could be the case if the X is a Majorana particle, like the
LSP typically.
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To determine the relic abundance of X particles we should write (and solve) a few
Boltzmann equations. Much intuition may be gained by using the thumb rule that
equilibrium is maintained as long as

Γ ∼
> H

where H is the expansion rate.

Thus freeze-out occur at a temperature such that

〈σ|v|〉nX ∼ g
1/2
⋆

T 2
FO

Mpl

which gives

nX|FO ∼ g
1/2
⋆

T 2
FO

〈σ|v|〉Mpl

→ nX

T 3
∼ g

1/2
⋆

xFO

〈σ|v|〉mXMpl

where x = mX/T . For weakly interacting particles mX/TFO = O(10 − 20).

This is an important and beautiful result: the relic abundance is inversely propor-

tional to the annihilation cross-section and dark matter particle mass.
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Agreement with the observed abundance Ωdm ∼ 0.25 requires σ ∼ 1pbarn
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Which dark matter?
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Massive neutrinos?
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The Cowsick-McLelland bound The Standar Model neutrinos decoupled from
matter at T ∼ 1MeV. At this temperature, their abundance, per neutrino specie,
was

nν =
3

4
nγ ∝ T 3

(assuming no large leptonic asymmetry)

Soon after decoupling, the eletrons and positrons became NR and annihilated each
others into photons. The temperature of the photons decreased more slowly than
that of neutrinos so that (exercice)

Tν =

(

4

11

)1/3

Tγ

The bottom line is that today Tν = 1.96K and

nν = 112cm−3

per neutrino specie.

If the neutrinos are massive, we get that they contribute

92



Ων,0 =

∑
νi

mνi

94 eV

which gives a bound on neutrino masses.



Ordinary or baryonic matter There is much more matter than antimatter
around us.

If there were anti-galaxies somewhere, we would probably see spectacular flashes
of γ rays in collisions of galaxies.

The parameter η = nb/nγ tells us that there are much more photons than baryons.
It is also a measure of the baryon asymmetry of the universe.

Indeed

nB

nγ

=
nb − n�b

nγ

∼
nb − n�b
nb + n�b∣

∣

∣

∣

T>mb

∼
nb

nγ

∣

∣

∣

∣

T<mb

is a constant if the number of photon does not change and baryon number is
conserved

(This is a poor approximation since photons are created in annihilation processes - we should use

the entropy density instead of nγ but the idea is the same)

Hence, the asymmetry between matter and antimatter is small O(10−10)
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What about a baryon symmetric universe?

If there were as many baryons as antibaryons initially, on the course of the universe
they would start annihilating when T ∼

< 1GeV.

From the dark matter lesson, we know that their would be a residual abundance of
baryons (equal to antibaryons) of order

nb ∝ 1

σ

where the annihilation cross-section σ ∝ 1/m2
π.

Calculations show that TFO ∼ 20MeV and that the residual abundance of baryons
would be

nb/nγ ∼ 10−20

This is called the “annihilation catastrophe”.
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Hence there must be a baryon asymmetry. Still, would be nice if we could explain
why it is so small.

Sakharov (1967) has proposed a scenario called “baryogenesis”.

He showed that a baryon asymmetry might arise from a baryon symmetric universe
provided

1. Baryon number is not conserved

2. C and CP symmetries are violated

3. There is departure from thermal equilibrium

95



Baryon non-conservation this condition is pretty obvious

All know processes conserve a quantum number called baryon number, eg

n → p + e + �ν
which has ∆B = 0.

The lightest baryon is the proton and processes like

p → π0 + �e
have never been observed. The current limits on this decay channel is

τp > 1.6 · 1033 yr

On the other hand baryon number is only a global symmetry of the classical SM
lagrangian.

It is broken at the quantum level by so-called chiral anomalies.

Moreover baryon number is not conserved in grand unification schemes, like SU(5).
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C and CP violation

Baryon number changes sign under C and CP.

A state with zero baryon number is thus an eigenstate of C and CP.

If C (CP) is conserved

[C(CP), H] = 0

then

〈B〉(t) = 0

for all time t.

C and P are maximally violated by weak interactions

while CP is almost conserved

Γ(KL → l+νπ−) − Γ(KL → l−�νπ+)

Γ(KL → l+νπ−) + Γ(KL → l−�νπ+)
= (3.27 ± 0.12)10−3
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Why C violation is not sufficient
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Departure from thermal equilibrium

In thermal equilibrium

fb(k) =
1

e(Eb−µb)/T + 1

andf�b(k) =
1

e(E�b−µ�b)/T + 1

with Eb =

√

k2 + m2
b and E�b =

√

k2 + m2�b.
CPT symmetry gives mb = m�b while in chemical equilibrium b + �b ↔ γ + γ

µb = −µ�b
If, moreover, processes which do not conserve B-number are in equilibrium, b+b ↔
γ + γ, then

µb = µ�b = 0

Thus

fb(k) = f�b(k)

No asymmetry may be generated in thermodynamic equilibirum.
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A simple scenario

Out-of-equilibrium decay of a massive particle

Let

X → B1 r

X → B2 1 − r�X → −B1 �r�X → −B2 1 − �r
Take a pair of X and �X. Their decay produces on average a baryon asymmetry

BX = rB1 + (1 − r)B2 − �rB1 − (1 − �r)B2 = (r − �r)(B1 − B2)

If C, CP are conserved, r = �r and there is no asymmetry. Idem if B1 = B2 of course.
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Consider a thermal bath of X and �X at temperature T .

We need the X and �X decay processes to take place out-of-thermal equilibrium.

This may happen if

ΓX ∼
< H

when T ∼ mX.

The abundance of X and �X is nX = n�X ∼ T 3. Dividing by the entropy density s ∼ g⋆T 3

gives a baryon asymmetry

ǫB ≈ (r − �r)(B1 − B2)

g⋆

∼ η

To actually compute the baryon asymmetry we of course need a specific model.
See for instance the lecture on leptogenesis by Pilar Hernandez.
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Chapter Four

Structures formation and Inflation
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Structures formation

So far we have considered a universe with perfect isotropy and homogeneity. How-
ever we see many structures in the universe on cosmological scales: galaxies, clusters
of galaxies and superclusters. We may characterise inhomogeneities on a given size
by their mean energy density contrast

∆ =
δρ

ρ

We saw this figure in the first lecture
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On the largest scales ∆ ∼
< 1 and we are in a linear regime (ie things are simple).

The aim is to study the evolution of ∆(z) and doing so to relate observations on the largest scales
to cosmological parameters.

The universe at large z is relatively simple. As in the previous section we may say that it contains
a different ideal fluids (different form of matter and radiation, possibly a cosmological constant).

The ideal fluids are inhomogeneous but we assume ∆ ≪ 1. We need four basic equations to describe
our fluid. They are

1. Eq. for conservation of energy = continuity equation

2. Euler equation = Newton applied to a fluid

3. Poisson equation = relates newtonian potential to energy density

4. Eq. of state = relation between pressure and energy density

In a linear approximation we get a wave-equation for ∆
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1. Neglecting gravity and expansion but not pressure we have the usual sound wave
equation.

In a mode decomposition ∆(x, t) ∼ ∆k(t)e
ikx�∆ + c2
sk

2∆ = 0

The solutions are simply oscillatory waves

∆ ∼ e±iωt+ikx

with ω = csk, where cs =
√

∂p/∂ρad is the speed of sound of the fluid.
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2. Introducing gravity and pressure but keeping the background static we have one
extra term in the wave equation�∆ +

(

c2
sk

2 − 4πGρ
)

∆ = 0

with ρ the average density of the fluid.

Let kJ =
√

4πGρ/c2
s.

If k ≫ kJ we have oscillatory solutions (gravity negligible) as before.

If k ≪ kJ we have exponentially growing and decaying modes

∆± ∼ e±Γt+ikx

with Γ ≈
√

4πGρ.

This is called the Jeans instability. It arises because gravity is attractive and tends

to amplify inhomogeneities.
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3. Introducing expansion brings two effects. There is an extra term�∆ + 2H _∆ +
(

c2
sk

2 − 4πGρ
)

∆ = 0

with H the Hubble parameter. This term will damp (freeze the evolution) of modes
such that k ∼

< H.

The most important effect however is that (asusming a MD universe for instance)

ρ ∝ a−3

ie the attractive effect of the background is diluted by expansion.

For k ≪ kJ, we get (in MD case) growing and decaying solutions again but

∆+ ∼ t2/3 and ∆− ∼ t2/3

This is an important result

∆+ ∼ t2/3 ∝ a(t)
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Primordial inhomogeneities and the CMB

We observe ∆ ∼ 1 on scales O(10Mpc). From our matter fluid analysis, we expect
∆ ∼ 10−3 at z ∼ 103.

This redshift zLS correspond to the epoch of last scattering between light and matter
(aka recombination).

For z > zLS we have

• Hydrogen fully ionized

• Thomson scattering γ + e− → γ + e−

• Coulomb scattering e− + p → e− + p

Z Photon-Baryon Fluid
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• Photon pressure resists gravitational compression

Z Acoustic oscillations of photon fluid

Since ρM ∝ T 3 and ρR ∝ T 4, we have for adiabatic perturbations (true curvature
perturbations)

∆ = 3Θ ≡ 3

4

δρR

ρR

with

Θ =
δT

T



At z ∼ zLS

• Recombination into neutral hydrogen (less free electrons)

• Decoupling when Γthomson ∼
< H (subtle problem) gives zLZ ∼ 103, T ∼ 3000K ∼ 0.25eV

• The universe becomes transparent...

Just like matter, the temperature inhomogeneities satisfy a simple wave equation
(we neglect gravity) �Θ + c2

sk
2Θ = 0

I have used another time coordinate called the conformal time.

η =

∫
dt

a

By construction, a particle that moves a the speed of light, travels a distance η in

a time interval η.
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Acoustic oscillations
l

Heating and cooling of photon fluid

Z Until last scattering η = ηls!

Assuming _Θ(0) = 0:

Θ(csηls) = Θ(0) os(kcsηls)

sound horizon = csηls

Peaks in the Power Spectrum = Variance of Θ(k, ηls)!

kn =
nπ

csηls
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The same but shows the succesion of

peaks in Θ2 at η = ηls in units of π/csηls

112



The C ′
ls

The temperature anisotropies at last scattering are expanded in spherical harmonics

ΘLS(θ,φ) =

∞∑

l=1

l∑

m=−l

almYlm(θ, φ)

By definition 〈alm〉 = 0 but

〈alma⋆

l ′m ′〉 = δll ′δmm ′Cl

For high l’s, we have many m’s with the same variance. We expect

∆Cl

Cl

∝ 1/
√

2l + 1
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Angular Anisotropy

θ ≈ λ

D

λ ≈ csηls D = omoving distane ≈ η0

ln ≈ nπ
η0

csηls

Spherical harmonics

(l conjugate to θ)

Flat Universe:

η ∝ (1 + z)−1/2 ηls

η0

≈ 1

30
≈ 2◦ l1 ≈ 200
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Two elementary things we learn from these data

1. The position of the first peak is related to the size of the horizon at last
scattering. Assume you know the latter. By measuring the position of the peak we
measure the angular size of the horizon.

θH < θH|flat θH = θH|flat θH > θH|flat
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2. On the largest scale, we are probing the primordial inhomogeneities (not repro-
cessed by microphysical processes).

We know since COBE that Θ ∼ 10−5.

Remember that, from large scale structures, we expected ∆ = 3Θ ∼ 10−3 at last
scattering ?

This is the best indication we have for the existence of dark matter
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Now including gravity and baryons

meff

�Θ + k2c2
sΘ ≈ −meffk

2c2
sΨ

meff ≈ 1 +
3ρb

4ργ

Ψ = Newtonian potential perturbation

1. ρb ≪ ργ and static potential Ψ:

Θ → Θeff = Θ + Ψ

Sachs-Wolfe effect

With Θ(0) = −2
3
Ψ, _Θ(0) = 0 (adiabatic initial conditions)
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Θeff =
1

3
Ψ(0) os(kcsηls)



2. Baryon drag: ρb/ργ and Ψ constant

• Baryons: greater compression in potential well

• Redshift not affected

Θeff =
1

3
Ψ(1 + 9ρb/4ργ) os(kcsηls) −

3ρb

4ργ

Ψ

• Enhances compression peaks over rarefaction ones!

• In particular, enhances first peak!
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Summary of WMAP results

Ωb = 0.047 ± 0.006

ΩM = 0.29 ± 0.07

H = 72 ± 5km · s−1 · Mpc−1

τ0 = 13.4 ± 0.3 Gyr

Ω0 = 1.02 ± 0.02

ΩΛ = 0.73 ± 0.04
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pΛ

ρΛ

= −1 ± 0.2

n = 1.05 ± 0.09



Inflation

An early phase of Accelerated Expansion (Inflation)

• Solves the flatness problem Ω0 ≈ 1

• Solves the horizon problem

• Predicts a scale invariant Harrison-Zeldovich spectrum of fluctuations ns ≈ 1

• Predicts adiabatic fluctuations

all

Consistent with CMB datas. . .
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Flatness problem

The CMB data tell us that the universe is flat to a very good approximation.

From Friedmann

|1 − Ω| =
|K|

a2H2
∝ _a−2

while Raychaudhuri �a
a

= −
4πG

3
(ρ + 3p)

For both matter and radiation _a decreases.

Take |1 − Ω| = O(10−2 today.

Then at TEQ ∼ 30000K

|1 − Ω| = O(10−6)

while at T ∼ 1MeV

|1 − Ω| = O(10−18)
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Conclusion: the geometry of the universe had to be very very very very very close
to flat for the universe to appear flat today



A simple remedy is to make the size of the universe very large, much larger than
our horizon.

We can achieve this dynamically if the universe goes through a phase of accelerated
expansion, �a > 0

then

|1 − Ω| ∝ _a−2 → 0

¡bf How much inflation do we need?

Take for instance p ≈ −ρ. Then H ≈ constant and

a = aie
H(t−ti)

For,say,

H ∼
(1016GeV)2

Mpl

∼ 1014GeV and ∆t ∼ 107tpl ∼ 10−36s

the scale factor growths by a factor of

a/ai ∼ e100
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The horizon problem solved

Our universe is very uniform, even on the largest scale we have access to

∼ H−1
0 ≈ 1028cm

At T 15GeV, say, this distance was equal to ∼ 10−28H−1
0 ∼ 1cm.

This was small, but much larger than the particle horizon = causally connected
region at T 15GeV, dH ∼ H−1 ∼ 10−14GeV ∼ 10−28cm.

Inflating this small distance by a factor of 1028 ∼ e65 would give a simple solution to
the horizon = homogeneity problem.
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How to make inflation?

The most economical, albeit ad hoc way is to take a scalar field φ with potential

V(φ) =
1

2
m2φ2

Suppose that the scalar field is, for some reason, presumably random chance, ho-
mogeneous, shifted away from its minimum and with small kinetic energy.

Then

ρ ≈ 1

2
_φ2 +

1

2
m2φ2 ≈ 1

2
m2φ2

and

p ≈ 1

2

_φ2 −
1

2
m2φ2 ≈ −

1

2
m2φ2

giving

p ≈ −ρ

all we need to inflate.
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What else is inflation good for?

Inflation is a source of primordial inhomogeneities.

This is a quantum effect, somewhat analogous to the phenomenon of Hawking
radiation by a black hole.

For inflation, it has to do with the fact that in an inflationary background (mass-
less or almost massless) scalar fields feel a reversed harmonic oscillator effective
potential.

While 〈δφ〉 = 0, the correlator = power spectrum is non-vanishing

Pφ(k) = 〈(δφ)2〉 ∝ GH2

k3

For H ∼ constant, the spectrum of fluctuations is scale-invariant ie

〈δφ2(x)〉 ∝
∫

d3kPφ(k) ∝
∫

dk

k
GH2

there is the same power per log interval of k.

This feature, called the Harrison-Zeldovich spectrum, is supported by both the CMB
and the large-scale structures surveys.
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“For every complex natural phenomenon, there is a simple, elegant,

compelling, wrong explanation”

Th. Gold
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